EGYPTIAN JOURNAL OF AQUATIC RESEARCH Vol. 31 No. 2, 2005:200-223.

1687-4285

WATER QUALITY ASSESSMENT OF RIVER NILE FROM IDFO TO CAIRO

AMAAL M. ABDEL-SATAR

National Institute of Oceanography and Fisheries

Keywords: water quality, major cation, nutrient salts, trace metals, River Nile

ABSTRACT

Water quality of the River Nile from Idfo to Cairo and trace elements of the Nile water were seasonally investigated from autumn 2000 to summer 2001. Eleven sites were selected along the main channel of the River Nile. In addition, six stations in front of some shore-line activities were also sampled to study the man's impact on the water quality of the Nile. The distribution of major cations and anions possessed the highest values in cold seasons and the lowest during the hot high-flow period. In addition, EC, TS, TDS, COD, NH_4^+ , orthophosphate, total phosphorus, Fe, Mn and Cu showed a steady increase from south to north. Point and non-point sources of pollution exerted negative local effects on the water quality of the receiving waters. The multiple correlation analysis showed a pattern of interrelationships between physical and chemical parameters.

INTRODUCTION

The River Nile is the life artery of Egypt. Throughout the known Egyptian history, the Nile had dominating influences on the economy, culture, public health, social life and political aspects. The High Dam reservoir has a huge water storage capacity about (164 Km³) insuring a plentiful freshwater supply all the year round (Abdel-Hamid et al., 1992). However, the construction of the High Dam resulted in great modification in the hydrodynamic regime of the River Nile, with significant changes in physico-chemical and biological characteristics of the downstream water (Saad and Goma, 1994; Fishar & Khalifa, 2003). Abdel-Shafy and Aly (2002) reported that the regulation ought to restore the healthy state of the river in terms of physical, chemical. and biological characteristics.

The characteristics of the Nile ecosystem clearly reflect the impact of river flow control and can be categorized into three regions: the Aswan High Dam reservoir, the river from Aswan to Cairo and the Delta. The water quality in the Nile downstream from Aswan has changed dramatically as the Nile water became silt-free, less turbid and with considerably less velocity (Saad and Goma, 1994). According to the National Water Research Center (NWRC, 2000), the River Nile from Aswan to El-Kanater Barrage receives wastewater discharge from 124 point sources, of which 67 are agricultural drains and the remainders are industrial sources.

Now, the changes in water quality are primarily due to a combination of land and water use, as well as water management interventions such as; (a) different hydrodynamic regimes regulated by the Nile barrages, (b) agricultural return flows, and (c) domestic and industrial waste discharges including oil and wastes from passenger and riverboats. These changes are more pronounced as the river flows through the densely populated urban and industrial

E-mail: mansourranda@yahoo.com.

centers of Cairo and the Delta region (Agricultural Policy Reform Program, 2002).

The water quality released from the Aswan High dam shows little degradation. It remains remarkably clean from chemical pollution until it reaches the Delta (Masoud et al., 2002). The TDS level in the Nile gradually increases from 150 ppm at Aswan to 250 ppm near Cairo. The oxygen concentration recovers as a result of atmospheric reaeration and increases from 4 ppm at Aswan to 9-10 ppm at 200 km downstream Aswan, in addition the inputs of sewage along the river reduce the oxygen content, especially near big cities (Abdel-Dayem, 1994). Wahaab and Badawy (2004) concluded that the River Nile receives a large quantity of industrial, agriculture and domestic wastewater. Nevertheless, the river is still able to recover in virtually all the locations, with very little exception.

According to the final report of Agricultural Policy Reform Program (2002), the water quality of the main part of the River Nile, from Aswan to Delta barrage is good inspite of the high organic and inorganic loads discharged from some drains and industrial activities.

The assessment of environmental quality with respect to heavy metals in aquatic systems involves the measurement of a series of metals in water, sediments and living organisms (Samecka-Cymerman and Kempers, 2001, Sanchez Lopez, 2004). The most important heavy metals from the point of view of water pollution are Zn, Cu, Pb, Cd, Hg, Ni and Cr. Some of these metals (e.g. Cu, Ni, Cr and Zn) are essential trace metals to living organisms, but become toxic at higher concentrations. Others, such as Pb and Cd have no known biological function, but are toxic elements (Dudka and Adriano, 1997).

Masoud *et al.*, (1994) concluded that the concentration of trace metals in Nile water has increased from south to north direction. Also, the large part of trace metals is associated with the suspended matter, where it increased from 3.3 mg/l at Esna (south) to 31.2 mg/l at Helwan (north). Issa *et al.*, (1997) reported that distribution pattern of the major elements (Na, K, Ca, Mg) and trace metals (Fe, Mn, Zn and Cu) in River Nile at the greater Cairo area were affected mainly by industrial and sewage effluents inflow to the river.

The present study was mainly intended to investigate the water quality of the river segment from Idfo to Cairo, where the multipurpose uses of water and human activities are intense. It also aims to reveal the interrelationships between different physical and chemical parameter studied.

MATERIALS AND METHODS

Surface and bottom water samples were collected seasonally (2000- 2001) by a polyvinyl chloride Van Dorn bottle at eleven sites along the main channel of the River Nile from Idfo to Cairo (Fig. 1). In addition, surface water samples were collected from six other stations (I-VI) opposite to some human activities to study the impact on the water quality of the Nile. The sampling sites and distance from High Dam (HD) are presented in Table 1.

Fig. (1): Map showing the sampling sites along the River Nile

Table (1): The sampling location and the distance from High Dam (H.D.) for each site

Sampling sites	Distance(Km) from HD	Remarks
Idfo	115	Water samples were collected from main channel (site 1) and the eastern bank in front of the Egyptian ferro-alloy Company (station I)
Esna	170	Water samples were collected from main channel (site 2) and the eastern bank in front of Esna Barrage (Touristic Galleon parking) (station II)
El- Oqsur	228	Water samples were collected from main channel (site 3) and the eastern bank in front of Touristic Galleon parking (station III)
Qena	293	Water samples were collected from main channel only (site 4)
Naga Hammadie	355	Water samples were collected from main channel only (site 5)
Souhag	440	Water samples were collected from main channel only (site 6)
Assiut	543	Water samples were collected from main channel (site 7) and the eastern bank in front of the Electric Power Station (station IV)
El-Menia	677	Water samples were collected from main channel only (site 8)
Beni-Suef	787	Water samples were collected from main channel only (site 9)
El-Hawamdia	912	Water samples were collected from main channel (site 10) and the eastern bank in front of the Sugar and Integrated industries Company (station V)
Rod El-Farag	950	Water samples were collected from main channel (site 11) and the eastern bank in front of many workshops for repairing and painting ships (station VI)

Field Observations

The electrical conductivity of the water samples (μ Scm⁻¹) was measured by using conductivity meter model (S.C.T.33 YSI), transparency (cm) by Secchi-disc, pH by Orion Research Ion Analyzer 399A pH meter and water temperature by a dry mercury thermometer.

Laboratory analysis

Water samples were kept into a one-liter polyethylene bottle in ice box and analyzed in the laboratory. The procedures used are specified in APHA (1995). CO_3^{2-} and HCO_3^{-} were measured titrimetrically on site. Total solids were measured by evaporating a known volume of well mixed sample and total dissolved solids were determined by filtration a volume of sample with glass micro fiber filter (GF/C) and a known volume of filtrate was evaporated at 105°C.

The dissolved oxygen content was performed by azide modification, COD by potassium dichromate oxidation and BOD by incubation 5 days methods. Chloride was determined by argentometric and sulphate by turbidimetric methods. Sodium and potassium were measured directly using the flame photometer model Jenway PFP, U.K. Calcium and magnesium were determined by EDTA titrimetric method.

Concentrations of nitrite, nitrate. ammonia, orthophosphate and reactive silicate were determined using the colorimetric techniques with formation of reddish purple azo-dye, Cd reduction, nesslerization, stannous chloride reduction and molybdosilicate methods, respectively. Total phosphorous was measured as reactive phosphate after persulphate digestion method.

Total Fe, Mn, Zn, Cu, Pb were measured after digestion using atomic absorption model (Perkin Elmer 3110 USA) with graphite atomizer HGA-600. It is to be noted that, the results obtained for most parameters in the surface and bottom midstream Nile water are relatively closed to each other, therefore the averages were calculated. Also, The correlation coefficients between the quality parameter pairs of the river water samples were calculated in order to indicate the nature and the sources of the polluting substances.

RESULTS AND DISCUSSION

The study offered comprehensive water quality information of the River Nile from Idfo to Cairo. The results of ranges, means and SD of the studied physical and chemical parameters for water samples in the midstream (sites 1-11) are given in Table 2. **Physical properties of midstream Nile water**

Water temperature showed a noticeable seasonal trends with a lowest value (17.1 °C) recorded in winter and a highest (28.2 °C) in summer. The slight variations between different sites were mainly due to different sampling times. Water temperature showed a negative correlation with dissolved oxygen and a positive one with air temperature during most seasons (Table 3). This indicates that air temperature plays an important role for the heat budget of the Nile water.

Electrical conductivity showed lowest values during winter (244.5-322.5 μ Scm⁻¹) with a slight increase downstream (Fig. 2). It showed positive correlation with many parameters like, for instance, Cl⁻, SO₄²⁻, HCO₃⁻, Na, K, Ca and Mg during most seasons (Table 3), which constitute the major anions and cations present in the Nile water.

The water transparency showed a sharp reduction from Idfo (site 1) to Rod El-Farag (site 11). It ranged between 55 to 255 cm (Fig. 2). The increase in transparency values in summer (75-255 cm) might be attributed to the increase in intensity of solar radiation penetrating the surface water (Abdel-Satar, 2001). Transparency showed high negative correlation with TS, COD, and BOD during most seasons (Table 3).

Total solids (TS) and total dissolved solid (TDS) showed a steady increase from up- to downstream sites. The increase in TS values during spring (324-552 mgl⁻¹) for all sites is probably due to the phytoplankton blooming (Saad, 1973; Abdel-Satar, 1998). TDS

maintained positive relationships with Cl⁻, SO_4^{2-} , HCO_3^{-} , Na, K, Ca and Mg during most seasons (Table 3).

Chemical properties of midstream Nile water

pH values were in the alkaline side (7.4-9.02). Small local differences were observed with no clear seasonal variations. The increase in pH values during spring season (7.94-9.02) might be due to the dense of vegetation and phytoplankton, which were accompanied by photosynthetic activity and consumption of CO_2 with expected pH elevation (Sabae, 2004). pH showed a negative correlation with most studied parameter, Table 3.

Dissolved oxygen values (DO) ranged from 5.56 to 10.70 mgl⁻¹, with remarkable seasonal and local variations. The decrease in DO in summer along different sites (Fig. 2) might be due to the elevation of water temperature and the increase in oxidative processes of organic matter (Abdel-Satar and Elewa, 2001). Relatively low DO level was recorded at site 1 (5.6 mgl⁻¹) in summer season. This seems to be a problem downstream from the High Dam, due to the dam's discharge, which delivers water from Lake Nasser at low depths (El-Sherbini et al. 1996). During different seasons, sites 9 and 10 downstream showed low DO concentrations (Fig. 2) due to its consumption by the oxidation of nitrogenous compounds. This finding was fully confirmed with the increase in ammonium and nitrate at the two sites (Fig. 4), where the nitrogenous compounds played an important role in the depletion of DO (Deai et al., 1991). DO was correlated negatively with nitrite, ammonium, but positively with pH during most seasons (Table 3).

COD values showed a slight, but a steady increase from south to north (Fig. 2). BOD showed a random distribution, but did not exceed the Egyptian standard value (6 mg/l). As expected, COD values (2.2-9.6 mgl⁻¹) for all water samples were higher than those obtained for BOD (0.83-5.7 mgl⁻¹), as the latter deals only with the oxidation of biodegradable organic matter. For most sites,

relatively high values of BOD and COD were estimated in winter, with low water discharges. The present results of BOD were in agreement with those obtained by El-Sherbini *et al.*, (1996) and Agricultural Policy Reform Program (2002). They reported that the BOD concentrations varied in the ranges 0.4-4.7 and 1-3.5 mgl⁻¹, respectively in the Nile water from Aswan to Cairo.

Carbonate showed a wide range of variations (0.0-7.0 mgl⁻¹), with interrupted seasonal trends. It showed positive correlation with DO, COD and BOD (Table 3). The bicarbonate values fluctuated between 112.9 and 154.3 mgl⁻¹. It showed a steady increase from up- to downstream sites. The highest values were recorded at site 11 (136.3-154.3 mgl⁻¹) for all seasons. This might be attributed to the presence of high amount of organic matter accessible to bacterial decomposition by increasing boats and density of ship, where bicarbonate is the final product of the decomposition (Elewa and Gallab, 2000)

Chloride concentrations varied between 16.07 to 29.54 mgl⁻¹. The highest values were registered in cold seasons and the lowest in hot high-flow period (Fig. 3). The chloride concentrations possessed a good positive relationship with most anions and cations. Sulphate showed a behavior similar to that of CI^{-} (Fig. 3). It ranged between 7.76 to 58.90 mgl⁻¹, with a high increase at site 10 (16.91-58.90 mgl⁻¹) during different seasons. This reflects the input of high amount of sulphates in the effluent discharges from Sugar and Integrated industries Company.

The distribution of the cations (Na, K, Ca and Mg) was similar to those of the anions (Cl⁻ and SO₄²⁻), showing a minor decrease upriver and lowest values during the hot high-flow period (Fig. 3). The decrease in K values (4.03-6.59 mgl⁻¹) in the Nile water than Na (18.37-35.69 mgl⁻¹) might be attributed to the high mobility of sodium ion and dominates in the natural solutions (Ramanathan *et al.*, 1994).

			8	. Surface water				
	Au	tumn	Wi	nter	Sp	ring	Sur	nmer
Parameter	Range	Mean±SD	Range	Mean±SD	Range	Mean±SD	Range	Mean±SD
Water Temp.(°C)	18.5-23.2	21.15±1.45	17.1-18.9	18.0±00.7	22.2-27.0	23.95±1.5	23.1-28.2	26.31±1.91
EC (μ Scm ⁻¹)	242-375	296±41.9	244-320	269±23	252-320	285±21	256-329	298.18±19.0
Transparency(cm)	70-220	118.6±49.5	68-250	140.1±75.2	68-240	131.4±60.9	75-255	160.91 ± 75.53
TS (mg/l)	164-355	243.45±67.16	132-368	233.27±75.47	256-628	423.09±103.5	128-225	184.82 ± 26.05
TDS (mg/l)	129-315	202.9±66.27	92-328	193.27±75.47	176-538	324.64±105.9	98-195	154.9±25.99
Hd	7.4-8.04	7.69±0.23	7.48-7.7	7.63±0.08	7.94-9.03	8.6±0.35	7.4-7.7	7.5 ± 0.08
DO (mg/l)	7.4-10.0	8.9 ± 0.98	7.8-11.0	9.5±1.17	7.2-10.4	9.0±1.11	5.5-9.9	7.2±1.18
COD (mg/l)	2.4-7.1	4.93 ± 1.33	3.6-9.2	7.14±1.76	2.4-6.48	4.92±1.22	3.24-5.76	4.31±0.84
BOD (mg/l)	1.6-5.4	3.4 ± 1.1	1.3-5.6	2.8±1.4	1.6-4.4	3.1 ± 1.2	1.0-4.8	3.0-1.6
$CO_3^{2-}(mg/l)$	0-8	2.15 ± 3.06	0-8	2.36±2.96	0-8	2.04±2.5	0-2	0.93 ± 1.63
HCO ₃ ⁻ (mg/l)	112-154	133.3±12.9	122-144	131.45±7.2	118-136.5	127.8±5.81	114-135	120.98±8.41
CI ⁻ (mg/l)	17.07-27.4	20.97±2.87	19.69-29.4	22.57±3.22	17.07-23.56	19.12±2.01	16.07-18.85	17.13 ± 0.84
SO_4^{2-} (mg/l)	16.72-35.95	22.69±6.05	8.22-29.32	21.07±5.53	9.02-58.24	16.03 ± 14.1	7.56-13.13	11.09±3.51
Na (mg/l)	22.66-34.89	27.83±3.71	22.18-34.22	28.37±4.06	18.37-23.88	21.45±1.86	18.48-26.45	4.70±0.32
K (mg/l)	5.21-6.02	5.46±0.27	4.70-5.91	5.30±0.44	4.03-4.62	4.34±0.27	4.31-5.35	4.70±0.32
Ca (mg/l)	27.25-35.21	30.60±2.52	25.65-35.27	29.42±3.08	24.05-32.06	26.91±2.39	19.64-29.84	25.621±3.78
Mg (mg/l)	13.80-15.89	15.15 ± 0.74	13.17-17.79	15.53±1.22	8.51-13.79	10.98 ± 1.59	8.82-10.57	9.31±1.15
NO ₃ ⁻ (μg/l)	30.86-661.7	196.7±194.2	22.28-579.4	99.61±162.47	10.29-58.74	18.50±14.06	10.86-33.71	24.36±7.19
NO ₂ ⁻ (μg/l)	0.756-24.56	9.25±8.12	2.65-10.96	5.93±2.74	0.756-10.58	4.03±2.99	1.13-12.09	8.680±5.87
NH ₃ (mg/l)	0.130-0.564	0.279 ± 0.13	0.148-2.405	0.419±0.66	0.157-0.916	0.324 ± 0.21	0.204-1.850	0.583 ± 0.70
Ortho-P (µg/l)	34.70-78.40	57.73±16.75	19.26-114.38	60.70±25.85	17.99-129.80	61.85±37.23	30.84-80.97	75.31±14.96
Total-P (mg/l)	0.138-0.368	0.229 ± 0.08	0.089-0.187	0.129±0.04	0.048-0.302	0.185 ± 0.08	0.134-0.391	0.252 ± 0.08
SiO ₃ ²⁻ (mg/l)	2.21-6.57	3.93 ± 1.21	0.47-2.16	1.25 ± 0.49	1.02-5.76	3.05 ± 1.39	0.70-6.14	2.58±1.67
Fe (mg/l)	0.130-1.117	0.521 ± 0.40	0.166-1.288	0.512±0.42	0.408-1.297	0.864 ± 0.39	0.301-1.567	1.230 ± 0.55
Mn (μg/l)	52.69-144.93	82.69±27.83	17.80-123.07	55.47±36.13	20.87-133.53	53.84±39.03	58.0-185.93	130.17±34.60
Zn (µg/l)	14.20-97.0	35.16±22.77	5.40-33.65	14.96±9.24	6.73-29.88	15.93 ± 6.40	11.80-49.85	35.82±20.42
Cu (µg/l)	9.00-51.32	21.95±14.89	6.67-49.20	18.72 ± 16.76	3.93-30.24	11.87 ± 8.33	5.07-45.20	27.81±1095
Pb (μg/l)	15.33-34.67	23.72±6.25	10.27-61.64	40.21±14.77	6.33-23.52	12.82±5.33	5.64-24.33	15.94±6.87

Table (2): Ranges, means and standard deviation of the physical and chemical parameters in midstream Nile water

	Aut	tumn	Wi	nter	Spi	ring	Sun	ımer
	Range	Mean±SD	Range	Mean±SD	Range	Mean±SD	Range	Mean±SD
Water Temp.(°C)	18.5-23.2	21.15 ± 1.45	17.1-18.9	18.0 ± 00.7	22.2-27.0	23.95±1.5	23.1-28.2	26.31±1.91
EC (μ Scm ⁻¹)	258-375	299.55±39.83	241-325	271.5±24.61	250-330	291.4 ± 29.33	278-332	298.18±19.0
TS (mg/l)	190-358	275.45±60.76	164-338	238.0±62.29	288-592	440.73±98.62	164-230	169.45±21.49
TDS (mg/l)	160-328	245.45±60.76	132-298	198.73-66.45	188-492	339.91±97.89	128-190	158.27±19.09
Hd	7.4-8.02	7.67±0.23	7.4-7.7	7.62±0.11	7.94-9.0	8.58±0.28	7.4-7.69	7.5±0.08
D.O (mg/l)	7.5-9.6	8.8±0.75	7.4-0.4	9.3±1.02	7.2-9.6	8.5±0.77	5.6-9.4	7.2±1.18
COD (mg/l)	2.00-8.00	5.70±2.00	4.00-10.00	6.90±2.01	4.00-8.40	5.92 ± 1.36	3.00-5.84	4.31 ± 0.84
BOD (mg/l)	2.4-6.0	3.6±1.1	1.2-4.9	2.9±1.3	1.0-5.2	3.0±1.5	0.7-5.0	3.0-1.6.
$CO_{3}^{2-}(mg/l)$	0-4.8	1.05 ± 1.53	0-8	2.13±2.71	9-0	0.98 ± 1.93	0-4	0.93 ± 1.63
HCO ₃ ⁻ (mg/l)	116-154.6	135.07±13.07	119.6-144.5	126.66±9.75	124-136	128.55±4.41	111.8-139	120.98±8.41
Cl ⁻ (mg/l)	18.08-27.48	21.14 ± 2.80	19.08-29.68	22.58±3.57	17.68-23.74	19.13±1.73	16.07-18.90	17.13 ± 0.84
SO_4^{2-} (mg/l)	14.46-38.07	24.00±7.01	8.62-31.18	21.14 ± 5.70	9.02-59.56	17.09±14.51	7.96-20.69	11.09±3.51
Na (mg/l)	23.06-35.69	28.03±3.37	22.72-33.46	28.25±3.79	4.03-4.89	4.43±0.27	4.46-5.40	4.70±0.32
K (mg/l)	5.21-6.14	5.54±0.30	5.02-6.59	5.38±0.42	4.03-4.89	4.43±0.27	4.46-5.40	4.70±0.32
Ca (mg/l)	27.254-36.890	30.972±3.13	26.453-36.990	30.180±3.70	23.246-31.640	26.062±2.62	20.880-30.461	25.621±3.78
Mg (mg/l)	13.40-16.54	15.29±1.12	13.58-19.25	15.46 ± 1.80	9.22-16.21	11.98±2.24	7.70-11.15	9.31±1.15
NO ₃ ⁻ (µg/l)	42.28-543.97	237.06±152.4	24.00-458.10	94.89±122.94	13.71-62.28	26.44±17.00	15.43-37.71	24.36±7.19
NO ₂ ⁻ (µg/l)	2.645-24.179	10.561±7.66	4.156-10.956	7.212±2.07	2.267-17.757	7.024±5.74	1.889-23.801	8.680±5.87
NH ₃ (mg/l)	0.148-0.542	0.344 ± 0.13	0.111-2.590	0.449 ± 0.71	0.139-0.925	0.330±0.22	0.222-2.683	0.583 ± 0.70
Ortho-P (µg/l)	42.41-111.81	68.89±22.55	37.27-74.54	57.13±13.11	30.64-104.10	66.29±26.28	55.26-102.81	75.31±14.96
Total-P (mg/l)	0.158-0.399	0.249 ± 0.08	0.077-0.303	0.156 ± 0.08	0.058-0.298	0.168 ± 0.078	0.141-0.428	0.252 ± 0.08
SiO ₃ ²⁻ (mg/l)	1.74-6.75	4.07±1.26	0.84-2.61	1.48 ± 0.51	0.81-5.87	3.17±2.05	0.84-6.86	2.58±1.67
Fe (mg/l)	0.182-1.369	0.730±0.41	0.192-2.011	0.828 ± 0.57	0.850-2.136	1.171 ± 0.39	0.601-2.497	1.230 ± 0.55
Mn (μg/l)	76.40-146.41	100.61 ± 21.85	22.40-11.21	59.20±29.10	22.64-182.60	84.27±48.01	59.73-191.67	130.17±34.60
Zn (µg/l)	29.24-105.93	44.32±21.39	16.53-44.11	24.73±8.08	12.80-39.88	22.76±7.81	6.53-69.85	35.82±20.42
Cu (µg/l)	10.21-47.85	29.25±9.69	11.63-50.31	25.41±10.31	11.26-32.56	21.51±7.76	10.80-43.60	27.81±1095
Pb (μg/l)	15.33-36.25	26.41±6.54	20.33-60.58	47.22±12.28	9.67-23.91	17.33±4.74	10.12-23.66	16.81±4.46

b. Bottom water

Table (2): Continued

WATER QUALITY ASSESSMENT OF RIVER NILE FROM IDFO TO CAIRO

3
H
=
-
+
-
0
()
-
••
2
5
1
-
9
655
-
F

c. Average

Parameter Ranges Means±SD Ranges Meanstall Ranges Ranges Ranges Ranges		Aut	tumn	Wi	nter	Sn	ring	Sur	nmor
Water Temp, (*C) 18.5-23.2 21.15±1.45 17.1-18.9 18.0±00.7 22.2-27.0 23.95±1.5 EC (μ Scm ⁺) 25.6-375 298±40.8 2.44.5-32.5. 270.64±23.63 25.5-322.5 288.18±24.21 Transparency(cm) 70-220 118.6±49.5 68.250 140.1±75.2 68.240 131.4±60.9 TS (mg/l) 151-321.5 224.552.82 133-312 196±66.16 214.455 33.2.450.3 DO (mg/l) 151-321.5 224.48 3.48±0.95 1.35-5.25 2.81±1.31 7.14+7 3.06±1.15 DO (mg/l) 3.2-7.1 5.31±1.33 3.8.9.4 7.6-10.6 9.42±1.1 7.21-10.0 8.78±0.89 DO (mg/l) 3.2-7.1 5.31±1.31 3.2-7.1 5.31±1.31 3.2-7.1 3.06±1.13 DO (mg/l) 3.2-7.1 5.31±1.31 7.21-10.0 8.78±0.89 CO2 ^k (mg/l) 1.6±2.05 0.0-7.0 2.25±2.66 0.0-5.0 1.51±1.7 DO (mg/l) 2.2-4.8 3.48±0.95 1.35±3.25 2.81±1.31 1.14+7 3.06±1.13 <th>Parameter</th> <th>Ranges</th> <th>Means±SD</th> <th>Ranges</th> <th>Means±SD</th> <th>Ranges</th> <th>Means±SD</th> <th>Ranges</th> <th>Means±SD</th>	Parameter	Ranges	Means±SD	Ranges	Means±SD	Ranges	Means±SD	Ranges	Means±SD
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Water Temp.(°C)	18.5-23.2	21.15±1.45	17.1-18.9	18.0±00.7	22.2-27.0	23.95±1.5	23.1-28.2	26.31±1.91
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	EC (μ Scm ⁻¹)	250-375	298±40.8	244.5-322.5	270.64±23.63	255-322.5	288.18±24.21	268.5-330.5	295.14±21.25
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Transparency(cm)	70-220	118.6±49.5	68-250	140.1 ± 75.2	68-240	131.4 ± 60.9	75-255	151.7±91.7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TS (mg/l)	186-356.5	259.5±59.46	173-352	235.6±66.43	324-552	431.9±88.6	160-227.5	190.6±20.09
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TDS (mg/l)	151-321.5	224.2±59.28	133-312	196±66.16	214-455	332.3±91.04	125-192.5	156.6 ± 19.58
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Hd	7.4-8.03	7.68 ± 0.23	7.45-7.7	7.63±0.1	7.94-9.02	8.59±0.35	7.41-7.7	7.5±0.08
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	DO (mg/l)	7.59-9.8	$8.84{\pm}0.84$	7.6-10.6	9.42±1.1	7.21-10.0	8.78 ± 0.89	5.56-9.45	7.16±1.24
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	COD (mg/l)	3.2-7.1	5.31 ± 1.33	3.8-9.4	7.02±1.82	3.2-7.0	5.42±1.16	3.12-5.3	4.23±0.61
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	BOD (mg/l)	2.2-4.8	3.48 ± 0.95	1.35-5.25	2.81 ± 1.31	1.4-4.7	3.06 ± 1.13	1.05-4.91	2.65 ± 1.33
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CO ₃ ²⁻ (mg/l)	0.0-5.0	1.6 ± 2.05	0.0-7.0	2.25±2.66	0.0-5.0	1.51 ± 1.7	0.0-3.0	0.71 ± 0.98
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	HCO ₃ ⁻ (mg/l)	116-154.3	134.2±11.49	121.0-144.3	129.1±7.6	121.0-136.3	128.19±4.48	112.9-137.0	120.33±6.6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cl ⁻ (mg/l)	17.58-27.44	21.06 ± 2.82	19.89-29.54	22.57±3.4	17.38-23.65	19.12±1.71	16.07-18.88	17.02±0.84
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SO_4^{2-} (mg/l)	15.59-37.01	23.34 ± 6.33	8.42-30.25	21.11 ± 5.53	9.82-58.9	16.56 ± 14.24	7.76-16.91	10.35 ± 2.57
K (mg/l) 5.21-6.08 5.5±0.28 5.02-6.09 5.34±0.32 4.03-4.75 4.38±0.22 Ca (mg/l) 5.21-6.08 5.5±0.28 5.02-6.09 5.34±0.32 4.03-4.75 4.38±0.22 Ca (mg/l) 27.66-36.05 30.79±2.77 26.05-36.07 29.8±3.35 24.05-31.17 26.49±2.42 Mg (mg/l) 13.6-16.1 15.22±0.90 13.38±17.76 15.5±1.27 8.87-15.0 11.48±1.83 NO5 (µg/l) 45.71-602.83 216.8±166.47 30.0-518.75 97.25±141.67 12.0-55.22 22.47±13.54 NO5 (µg/l) 1.7-24.37 9.91±7.84 3.4-10.2 6.57±2.13 1.51-11.71 5.52±3.8 ND5 (µg/l) 0.19-0.54 0.31±0.12 0.13-2.5 0.43±0.69 0.15-0.92 0.33±0.21 Ortho-P (µg/l) 38.56-91.89 63.31±17.73 29.56-86.11 58.92±16.99 24.42-116.95 64.07±29.45 Silo3² (mg/l) 0.164-0.384 0.239±0.071 0.083-0.241 0.142±0.05 0.051±0.95 0.17±20.92 0.17±20.92 0.17±20.92 0.11±1.51 55.2±67±11.51	Na (mg/l)	22.86-35.29	27.93±3.70	22.45-33.81	28.31±3.91	18.99-24.83	22.03±2.22	19.12-25.34	22.44±2.12
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K (mg/l)	5.21-6.08	5.5±0.28	5.02-6.09	5.34±0.32	4.03-4.75	4.38±0.22	4.39-5.37	4.69±0.30
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ca (mg/l)	27.66-36.05	30.79±2.77	26.05-36.07	29.8±3.35	24.05-31.17	26.49±2.42	20.26-29.84	25.0±3.43
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Mg (mg/l)	13.6-16.1	15.22 ± 0.90	13.38-17.76	15.5±1.27	8.87-15.0	11.48 ± 1.83	8.66-10.63	9.52±0.75
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NO ₃ ⁻ (μg/l)	45.71-602.83	216.8±166.47	30.0-518.75	97.25±141.67	12.0-55.22	22.47±13.54	17.29-32.0	22.96±4.72
$ \begin{array}{r r r r r r r r r r r r r r r r r r r $	NO_2^{-} (µg/l)	1.7-24.37	9.91 ± 7.84	3.4-10.2	6.57±2.13	1.51-11.71	5.52±3.8	1.51-17.95	6.92±4.29
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NH ₃ (mg/l)	0.19-0.54	0.31 ± 0.12	0.13-2.5	0.43 ± 0.69	0.15-0.92	0.33±0.21	0.24-2.27	0.52 ± 0.58
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ortho-P (µg/l)	38.56-91.89	63.31±17.73	29.56-86.11	58.92±16.99	24.42-116.95	64.07±29.45	52.69-84.82	71.02±9.6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Total-P (mg/l)	0.164-0.384	0.239 ± 0.071	0.083-0.241	0.142 ± 0.05	0.053-0.280	0.177 ± 0.075	0.137-0.409	0.246±0.072
Fe (mg/l) 0.17-1.18 0.63±0.41 0.19-1.65 0.67±0.49 0.64-1.71 1.02±0.36 Mn (µg/l) 66.18-145.67 91.65±23.16 21.37-111.77 57.33±32.42 21.75-158.07 69.06±39.69 Zn (µg/l) 24.91-76.93 39.75±17.87 13.04-38.88 19.84±7.96 12.20-34.88 19.34±6.73 Cn (µg/l) 9.61-40.59 39.75±17.87 13.04-38.88 19.84±7.96 12.20-34.88 19.34±6.73	SiO ₃ ²⁻ (mg/l)	2.66-6.66	4.0±1.08	0.77-2.39	1.36 ± 0.46	1.22-5.50	3.11 ± 1.51	1.19-6.50	2.40±1.45
Mn (μg/l) 66.18-145.67 91.65±23.16 21.37-111.77 57.33±32.42 21.75-158.07 69.06±39.69 Zn (μg/l) 24.91-76.93 39.75±17.87 13.04-38.88 19.84±7.96 12.20-34.88 19.34±6.73 Cn (ще/l) 96.1-49.59 25.60±10.08 9.78-49.76 22.06±12.02 7.65±1.41 15.60±7.12	Fe (mg/l)	0.17-1.18	0.63 ± 0.41	0.19-1.65	0.67±0.49	0.64-1.71	1.02 ± 0.36	0.45-2.03	1.12 ± 0.44
Zn (µg/l) 24.91-76.93 39.75±17.87 13.04-38.88 19.84±7.96 12.20-34.88 19.34±6.73 Cn (µg/l) 961-4959 3560+10.98 978-4976 22.06±12.93 7.6-31.4 15.60±7.12	Mn (μg/l)	66.18-145.67	91.65±23.16	21.37-111.77	57.33±32.42	21.75-158.07	69.06±39.69	58.87-188.8	117.65 ± 34.40
Chi (ho/l) [9.61–40.50 25.60+10.08 9.78–40.76 22.06+12.02 7.6-21.4 15.60+212	Zn (µg/l)	24.91-76.93	39.75±17.87	13.04-38.88	19.84±7.96	12.20-34.88	19.34±6.73	13.10-59.85	30.67±14.39
$CI'I \pm CI'I \pm CI'I \pm CI'I + $	Cu (µg/l)	9.61-49.59	25.60 ± 10.98	9.78-49.76	22.06±12.93	7.6-31.4	16.69±7.13	11.34-43.28	23.87±11.48
Pb (μg/l) 17.60-35.46 25.06±5.77 15.3-61.11 43.72±13.17 9.0-23.72 15.08±4.6	Pb (μg/l)	17.60-35.46	25.06±5.77	15.3-61.11	43.72±13.17	9.0-23.72	15.08±4.6	7.99-23.31	16.37±5.12

AMAAL M. ABDEL-SATAR

WATER QUALITY ASSESSMENT OF RIVER NILE FROM IDFO TO CAIRO

Fig. (2): Variations of some parameters in the River Nile water

Fig. (3): Variations of selected major anions and cations in the River Nile water

The decrease in Na and K concentrations in hot seasons is probably due to the increase in water discharges and their uptake by adsorption on suspended particulate material (Abdo, 2004a). Based on their annual averages, they possessed a ratio of 5:1 (Na:K). The two elements fulfilled a positive relationship (Table 3).

The results indicated that the lowest values of Ca were recorded in the hot seasons $(20.26-31.17 \text{ mgl}^{-1})$ and the highest in the cold seasons $(26.05-36.07 \text{ mgl}^{-1})$. This might be due to the decrease in the solubility of CaCO₃ as the temperature increase. This was achieved by a negative correlation existed between calcium and water temperature during autumn and summer.

The concentrations of magnesium showed low values (8.66-17.76 mgl⁻¹) compared with calcium concentrations (20.26-36.07 mgl⁻¹), because there is a preponderance of Ca over Mg in sedimentary rocks, (Abdel-Halim, 1993). In addition, the preferential behavior of dissolved CO_2 may affect the concentration of magnesium in solution, when CO_2 present appreciable in concentration it reacts with calcium salts than with magnesium, thus converting large quantities of calcium into soluble bicarbonates (Abdel-Halim, 1993). The highest values of Ca (36.07 mgl⁻¹) and Mg (17.76 mgl⁻¹) were recorded at El-Hawamdia (site 10) opposite to the discharge point of the Sugar and Integrated industries Company.

The concentrations of major cations in the River Nile showed proportions of Ca>Na>Mg>K and major anions of HCO₃ >Cl \approx SO₄²⁻. The ratio of monovalent (Na&K) to divalent (Ca&Mg) cations (M:D) is important in respective to the distribution and dynamics of algae (Roos and Pieterse, 1995). The M:D ratios in the River Nile display relatively small variations and well below 1.5 with a mean of 0.74 (min.=0.67 , max.= 0.80).

With respect to nutrient, Nitrate is often the limiting element restricting biological productivity of Nile water (Toullabah, 1996), and phosphorus control is often of prim importance in reducing deterioration of water quality (Sharpley *et al.*, 1987).

The values of nitrate fluctuated within a wide range 12.0- 602.8 µgl⁻¹ (Fig. 4). The highest values were mainly recorded in autumn and winter $(30.0-602.8 \ \mu gl^{-1})$, while the lowest in the hot high-flow period (12.0-55.22 μ gl⁻¹). For most sites, the decrease in nitrate concentrations in spring might be attributed to the uptake of nitrate by natural phytoplankton and its reduction by denitrifying bacteria (Saad and Abdel-Moati, 1997; Sabae and Abdel-Satar, 2001). The increase of nitrate in cold seasons might be attributed to low consumption bv phytoplankton as well as the oxidation of ammonia by nitrifying bacteria and biological nitrification (Macdonald, et al. 1995).

The results of nitrite showed low levels during the whole period of investigation $(1.51-24.37 \ \mu gl^{-1})$. This might be attributed to the fast conversion of NO₂⁻ to NO₃⁻ ions by nitrifying bacteria (Abdo, 2004a). The upstream sites (1-4) showed higher values than downstream except site 10 (Fig. 4).

Ammonium accounted for the major proportion of total soluble inorganic nitrogen. It showed a slight increase from up- to down stream sites, but without clear seasonal trends (Fig. 4). The highest concentrations were exclusively registered for site 10 (2.50 mgl⁻¹) opposite to the discharge point of the Sugar and Integrated Industries Company and the lowest in winter season for most sites (0.13-0.31 mgl⁻¹). Ammonium showed significant positive correlation with temperature during spring and summer (Table 3), which suggest the increase in ammonia with temperature increase (Vander Weijden, and Middelburg, 1989) and with EC during all seasons, which prove the predominance of ionized form in the River Nile. It was correlated negatively with transparency and pH (Table 3).

Values of orthophosphate (ortho-P) and total phosphorus (total-P) exhibited local variations with interrupted seasonal trends and gradual increase from up-to down stream sites by increasing human activity during different seasons. The ranges of ortho-P and total-P were 0.024-0.117 and 0.053-0.409 mgl⁻¹, respectively (Fig. 4). Total-P showed relatively high values in summer season (0.137-0.409 mgl⁻¹), where the maximum value was recorded at site 10 opposite to the discharge point of the Sugar and Integrated Industries Company.

The statistical analyses showed negative correlation between pH and ortho-P as well as total-P in autumn and summer (Table 3), suggesting that the solubility of phosphorus is dependent on pH (Diaz *et al.*, 1994). The positive correlation between total-P and COD during most seasons (Table 3), suggest that large amount of total-P in Nile water is associated with organic matter.

Silicate fluctuated between 0.77 to 6.66 mgl⁻¹ (Fig. 4), without defined seasonal trends. The pronounced decrease in silicate of the Nile water during winter $(0.47-2.61 \text{ mgl}^{-1})$ is related to the low flow discharge of Nile water in addition to uptake by diatoms phytofungi, algae, blooms. and zooplanktons and fishes (Elewa and Gallab, 2000). The silicate showed higher values in the up-stream sites (1-6) than the downstream (7-11), where the maximum values were recorded at site 1 (4.44-6.66 mgl⁻¹) opposite to the discharge of the Egyptian ferro-alloy Company.

Obviously, there was a gradual increase in the concentrations of eutrophication key elements (phosphorus and nitrogen) (Fig. 4) from up- to downstream sites, Similarly, water conductivity, total dissolved salts, chloride, total alkalinity, Na, K, Ca, Mg, had maximum values at the downstream sites. The results were in conformity with those obtained by (Abdel-Hamid *et al.*, 1992; Elewa, *et al.*, 1995; Masoud *et al.*, 2002)

Total trace metals in Nile water

River Nile is the main source for potable water and as the result of human activities in and on the river body, it become loaded by metal pollution (Abdo, 2004b; Ibrahim and Tayel, 2005). Total trace metals exhibited different behavior, with constant or increasing concentrations up river, Fe showed progressive increase from up- to downstream sites with clear seasonal trends and fluctuated between 0.17 and 2.03 mgl⁻¹ (Fig. 5). The highest values were estimated in spring and summer while the lowest in cold seasons. The decrease in Fe concentrations during cold seasons might be attributed to the increase in DO, which leading to oxidation of iron and precipitates under alkaline pH. This finding was in conformity with the negative correlation between Fe and DO in winter and spring seasons (Table 3).

Mn concentrations fluctuated between 21.37 and 188.80 μ gl⁻¹, with interrupted seasonal trends (Fig. 5). It showed a slight increase from up- to downstream sites, while the maximum value was recorded at site 1 (188.8 μ gl⁻¹) in summer. The significant positive correlation between Fe and Mn during most seasons, (Table 3) indicated that the association of two elements originates from a common source during transportation and/or depositional reactions (Abdel-Satar and Elewa, 2001).

Zinc concentrations fluctuated between 12.20 and 76.93 μ gl⁻¹. The variations were mainly local without clear seasonal trends, where the maximum values were recorded at sites 5 and 8 in autumn season (Fig. 5). The Zn correlated positively with each of Fe and Mn during most seasons (Table 3). These are due to the Zn adsorption by hydrous iron and manganese oxides (Abdo, 2004b). In addition, Zn is correlated positively with Cu and Pb (Table 3).

Copper showed a wide range of variations (7.60-49.76 μ gl⁻¹) and a slight increase from up- to downstream sites with interrupted seasonal trends (Fig. 5). Cu concentrations increase sharply at sites 8 and 11 in autumn and 8, 9 and 11 in summer (Fig. 5). This is mainly due to domestic sewage discharge from boats and tourist ships, where the domestic sources are the major contributors of Cu in the environment (Issa *et al.*, 1997). The significant positive correlation between concentrations of Cu/Fe, Cu/Mn and Cu/Pb during most seasons (Table 3), indicate either their common urban origin or their common

sink in the stream sediments (Elewa and Gohar, 1999)

Pb values were characterized by remarkable seasonal variations and fluctuated between 7.99 to 61.11 µgl⁻¹ (Fig. 5). The increase in Pb during winter season might be attributed to the decrease in water discharges during the months of cold period, where the dilution and assimilative capacities of the Nile water are low as mentioned by (Abdel-Satar and Elewa, 2001). Generally, the increase in Pb concentrations in the Nile water might be attributed to the direct inputs from different sources (industrial wastes and atmospheric inflow of dust containing car exhaust). In addition, the increase in density of boats and ship, which discharge its effluent directly to the Nile containing high amount of Pb in both the dissolved and particular phases (Moon et al., 1994, Ibrahim and Tayel, 2005).

The negative significant correlation between transparency and total Fe, Mn, Zn, Cu, Pb during most seasons (Table 3), are mainly due to the effect of High Dam that reduces the amount of the suspended matter and in turn, decreases the total metals TS concentrations. showed significant positive correlation with total Fe, Mn, Zn, Cu and Pb during most seasons (Table 3), where suspended matter contains several types of substances; carbonates, Fe and Mn oxides, clays, organic detritus. These compounds play a role by providing active surface upon which trace metals can adsorb (Boughriet et al., 1992). The total trace metals sequence was Fe > Mn > Zn > Cu \approx Pb in the Nile water.

Impact of human activities on the River Nile

The aquatic environment with its water quality is considered the main factor controlling the state of health and disease in both man and animal.

Six stations (I-VI)) opposite some human activities were chosen to study their impacts on the River Nile, where the toxic compounds arising from industrial discharges (heavy metals, plus inert suspended or dissolved solids) and non point sources destroy the natural biological activity in the water (Ibrahim and Tayel, 2005). The results of ranges, means and SD of the studied physical and chemical parameters in riverbank (stations I-VI) are reported in Table 4.

The water transparency in riverbanks was lower compared to its value in the midstream Nile water. This is mainly attributed to the industrial, tourist wastes and the increase in boats density. It is varied between 40 to 235 cm, where the minimum value was recorded for station V in spring and the maximum for station III in summer.

The present study showed a pronounced increase in COD $(3.2-50.09 \text{ mgl}^{-1})$ and BOD $(2.0-6.8 \text{ mgl}^{-1})$ in the riverbank water than the midstream sites exceeding the Egyptian standard values for COD (10 mgl^{-1}) and BOD (6 mgl^{-1}) at stations V and III, respectively.

As might be expected, negative effects on water quality were observed in the vicinity of pollution point sources. For instance, station V (close to the discharge point of the Sugar and Integrated industries Company) showed a sharp increase in EC (350-573 μ Scm⁻¹), TS (592-794 mgl⁻¹), TDS (398-501 mgl⁻¹), COD (27.4-50.9 mgl⁻¹), SO₄²⁻ (74.69-119.13 mgl⁻¹), NH₄⁺-N (1.43-2.23 mgl⁻¹), total-P (1.55-2.57 mgl⁻¹), Fe (2.01-2.497 mgl⁻¹) and Mn (201.9-324.0 μ gl⁻¹) and a slight decrease in pH (7.1-7.6) and DO concentration (4.2-6.2 mgl⁻¹), which directly related to the untreated industrial effluents.

Furthermore, station I (close to the discharge of the Egyptian ferro-alloy Company) showed higher values in TS (198-316 mgl⁻¹), Ca (29.98-32.07 mgl⁻¹), NO₃⁻¹ (17.14-488.55 μ gl⁻¹), SO₄²⁻ (14.59-24.28 mgl⁻¹), SiO₃²⁻ (1.86-6.95 mgl⁻¹) and Fe (0.427-0.77 mgl⁻¹) than the midstream sites especially in cold seasons.

Stations II, III (in front of Touristic Galleon parking) showed a pronounced increase in TS (200-388 mgl⁻¹), COD (4.8-6.8 mgl⁻¹), BOD (2.8-6.8 mgl⁻¹), Zn (13.73-69.07

 μgl^{-1}) and Cu (10.23-60.23 μgl^{-1}) than midstream water, which affected by untreated domestic wastewater rich in organic matter. Beside station, VI is located close to effluents from many workshops for repairing and painting ships spread on the banks. It showed a slight increase in total-P (0.178-0.362 mgl ¹), COD (5.98-8.80 mgl⁻¹), BOD (3.9-4.6 mgl⁻¹) ¹), Cu (38.56 μ gl⁻¹) and a sharp increase in Pb $(30.63-64.98 \ \mu gl^{-1})$, where the fuel used in these ships give rise to an increase in the Pb concentration. While, the obtained results at station IV (in front of the Electric Power Station), did not show significant difference with the midstream water except for Mn $(59.4-269.33 \,\mu gl^{-1}).$

As seen from this study and reported in others (El-Gohary, 1983; Abdel-Hamid *et al.*, 1992; Abdel-Shafy, and Aly, 2002; Wahaab and Badawy 2004; Sabae, 2004), the River

Nile receives considerable amounts of untreated effluent rich in organic matter, that affect directly the river banks, while the midstream water is slightly affected. However, we may suggest that River Nile has an intense self-purification capacity, which is confirmed by the work of El-Gohary (1994), reporting that mid-stream conditions of the Nile are still, on an average, at a fairly clean level owing to dilution and degradation of the pollutants discharged.

Generally, pollution by agricultural, domestic and industrial wastes in the River Nile system has increased in the past few decades because of increase in population. Comparisons between the Nile water quality before and after High Dam construction are shown in Table 5.

рb	00 00 00 00 00 00 00 00	
Cu	0112 20	100
Zn	0.10 0.14 27	1.00
Mn	0.14 0.14 0.16 0.40	0.50
Fe	1.00 0.27 0.05 0.05 76	1.00 0.958 0.82
103	0.01 -0.024 -0.33 -0.31 -0.31 -0.31 -0.31	1.00 0.15 0.405 0.53
otal-P S	1,00 0.38 0.0.38 0.0.49 0.0.49 0.0.45	0.11 0.77 0.77 0.77 0.77 0.77 0.77 0.77
tho-P T	1.00 0.038 0.038 0.038 0.064 0.064 0.064 0.013	10 00.05 0.554 0.057 0.057 0.057 0.057 0.057
IH4 OI	0.01 0.01 0.01 0.01 0.03 0.048 0.048 0.048 0.048 0.048	1.00 0.11 0.01 0.01 0.01 0.01 0.05 0.05
VU3 N	- 1.00 0.07 0.07 0.01 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.5 0.	0.010 0.0100 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
102 1	Autumi 1 100 0.31 0.36 0.33 0.36 0.03 0.03 0.03 0.03 0.03	Winter 1.00 0.17 0.03 0.03 0.03 0.03 0.02
I BW	a. 1.00 0.03 0.46 0.40 0.46 0.46 0.046 0.046 0.03 0.05 Mg A	b. 1.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.
C.a	1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05	100 100 100 100 100 100 100 100 100 100
X	1 100 0.63 0.063 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Na	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.41 0.41 0.52 0.54 0.54 0.54 0.54 0.55 0.55 0.55 0.55
04	$\begin{array}{c} 1.0\\ 0.88\\ 0.88\\ 0.88\\ 0.08\\ 0.05\\ 0.06\\ 0.06\\ 0.06\\ 0.00\\ 0.01\\ 0.01\\ 0.02\\ $	1 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	100 100 100 100 100 100 100 100	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cc ²	1100 0.07 0.027 0.011 0.011 0.011	100 100 100 100 100 100 100 100 100 100
03 H	$\begin{array}{c} 0.02\\$	1.00 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
300	0.02 0.02 0.07 0.07 0.07 0.07 0.07 0.07 0.05	1 100 0.35 0.36 0.36 0.36 0.11 0.35 0.35 0.35 0.05 0.05 0.05 0.05 0.05
COD F	1,00 0,05 0,05 0,05 0,05 0,05 0,05 0,05	11.00 0.47 0.47 0.47 0.47 0.47 0.051 0.056 0.050 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750000000000
DO	1.00 0.040 0.040 0.07 0.015 0.015 0.015 0.015 0.024 0.024 0.026 0.0100 0.0100 0.0100 0.00000000	$\begin{array}{c} 11.00\\ 0.12\\ 0.058\\ 0.005\\ 0.$
Hd	1100 0.74 0.51 0.52 0.53 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02	1,00 0,01 0,02 0,05 0,05 0,05 0,04 0,01 0,01 0,01 0,01 0,01 0,05 0,05 0,05
IDS	0.11 0.01 0.02 0.05 0.06 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02	0.05 0.05
TS	0.11 0.01 0.01 0.05	$\begin{array}{c} 11.00\\ 0.56\\ 0.5$
EC	100 100 100 100 100 100 100 100	1,100 0,056 0,049 0,074 0,074 0,074 0,075 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,072 0,075 0,074 0,07740 0,07740 0,07740000000000
rans	0.0111.00 0.0154 0.0164 0.0164 0.0164 0.0168 0.0173 0.0073 0.0070	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.0 \\$
emp ti	0.00 0.024 0.018 0.018 0.024 0.024 0.024 0.013 0.024 0.0240 0.0240000000000	1,00 0.058 0.024 0.045 0.045 0.045 0.058 0.058 0.013 0.013 0.013 0.0170 0.0170000000000
h	amp 200 200 200 200 200 200 200 200 200 20	emp rams 1115 1115 1115 1115 1115 1115 1115 11

	Pb																1.00	βb																				1.00
	Cu															1.00	0.59	Cu																			1 00	0.74
	Zn														1.00	0.79	0.68	Zn																			0.75	0.63
	Mn													1 00	0.68	0.65	0.25	Mn																		1.00	0.34	0.76
	Fe												001	0.01	0.74	0.63	0.26	Fe																	1.00	0.37	0.45	0.43
	SiO3												1.00	-0.65	-0.46	-0.31	-0.27	SiO3																001	-0.20	0.65	-0.30	0.19
	Total-P											1.00	-0.68	0.76	0.72	0.50	0.36	otal-P																1.00	0.63	0.02	0.19	0.16
	ntho-P										1.00	0.59	-0.54	0.33	0.10	0.23	-0.01	rtho-P 7															1.00	0.21	0.63	10.0-	0.45	0.23
	NH4 C									. 00	0.19	0.71	09.0-	0.85	0.57	0.37	0.03	NH4 0														1 00	0.24	0.79	10.0-	0.16	-0.21	-0.02
	NO3									1.00	-0.24	0.22	-0.03	0.49	0.14	0.16	-0.21	NO3		-											. 00	-0.10	-0.13	-0.36	-0.41	-0.53	-0.47	-0.64
	NO2	Spring							1.00	0.52	-0.50	-0.20	0.01	0.44	0.17	0.36	-0.01	NO2		Summe											1.00	0.79	-0.26	0.57	0.27	-0.17	-0.40	-0.43
	BW	5						001	0.03	0.48	0.41	0.85	-0.66	0.80	0.72	09.0	0.40	Mg		d.										1.00	0.12	-0.04	0.08	0.05	0.02	-0.45	0.14	-0.15
	Ca							1.00	0.25	0.49	-0.02	0.72	-0.49	0.73	0.86	0.58	0.41	Ca											1 00	0.24	0.55	0.34	-0.48	0.20	0.12	0.14	-0.25	-0.09
	×						1.00	0.50	0.04	0.61	0.04	0.34	-0.38	0.23	0.17	0.08	-0.11	×											0.40	-0.06	0.45	0 79	0.31	0.63	0.77	0.34	0.05	0.10
	Na						0.42	0.41	-0.21	0.10	00.0	0.83	-0.82	0.65	0.36	0.31	0.10	Na										1.00	-0.18	-0.10	-0.10	-0.02	0.62	0.58	0.80	0.23	65.0	0.54
	SO4					1.00	0.49	0.67	0.48	0.74	0.07	0.56	-0.52	0.80	0.47	0.33	0.02	504									1.00	0.71	0.76	-0.01	0.53	0.89	0.45	0.73	0.94	0.22	0.12	0.24
	C				1 00	0.87	0.20	0.50	0.52	0.65	0.11	0.43	-0.33	0.75	0.47	0.50	0.00	CI								1 00	0.83	0.75	0.17	-0.05	0.49	0.76	0.25	0.69	0.74	0.03	0.16	0.07
	+CO3				1.00	0.03	0.03	0.42	0.45	0.00	-0.38	-0.07	0.01	0.14	0.57	0.60	0.52	fc03								1.00	0.72	0.67	0.35	0.34	0.0	0.41	0.42	0.36	0.78	0.23	0.50	0.49
	CO3- 1			1.00	-0.21	-0.23	0.00	-0.20	-0.43	-0.40	0.15	-0.10	0.20	-0.42	-0.12	-0.21	-0.02	CO3 +							1.00	0.22	0.29	0.73	-0.20	-0.14	-0.28	0.18	0.39	0.45	0.46	0.26	0.70	0.38
	BOD			0.53	-0.24	-0.14	0.38	0.15	-0.74	-0.13	0.37	0.40	-0.02	-0.20	0.07	-0.21	-0.18	BOD						1.00	0.53	0.36	0.33	0.71	-0.22	-0.03	-0.21	0.18	0.55	0.52	0.43	0.15	0.58	0.54
	COD		1.00	0.07	-0.12	0.15	-0.08	0.13	0.18	-0.02	0.39	0.38	0.39	0.42	0.27	0.48	07.0	COD					001	-0.07	0.37	0.46	0.26	0.35	0.36	0.36	0.11	60.0	-0.19	0.32	0.20	-0.24	0.38	0.00
	DO	1 00	-0.13	0.48	-0.84	-0.26	-0.04	-0.38	19:0-	-0.17	0.16	-0.10	0.18	-0.47	-0.64	-0.84	-0.40	DO					1.00	0.87	0.34	0.16	0.23	0.64	-0.11	-0.19	-0.26	90.0	0.54	0.36	0.27	00.0	0.43	0.43
1	Hd	1.00	-0.32	0.06	-0.52	-0.23	-0.07	-0.20	-0.37	-0.23	0.25	-0.02	-0.30	-0.09	-0.41	-0.52	07.0-	Hd				1.00	-0.30	-0.35	-0.30	-0.73	-0.04	-0.71	60.0	-0.01	0.0	-0.40	-0.62	-0.29	-0.75	-0.15	-0.46	-0.37
	SOL	1.00 0.08 0.08	0.29	-0.01	0.04	0.39	0.23	0.55	-0.30	-0.10	0.75	0.89	-0.82	0.64	0.66	0.48	0.52	SOL			1 00	-0.76	0.53	0.69	0.34	0.83	0.70	0.79	0.40	0.16	0.02	0.42	0.68	0.50	0.76	0.02	0.51	0.38
	15	1.00 1.00 0.04	0.32	-0.02	0.08	0.38	0.20	0.54	-0.26	-0.13	0.74	0.87	-0.82	0.64	0.67	0.52	0.34	15			1.00	-0.73	0.53	0.73	0.36	0.81	69.0	0.78	0.13	0.15	0.02	0.42	0.65	0.54	0.74	0.04	0.52	0.41
	EC	1.00 0.91 0.06 0.06	0.43	0.21	-0.15	0.60	0.24	0.50	-0.09	0.04	0.69	0.85	-0.87	0.74	0.54	0.38	0.25	EC		1.00	0.89	-0.73	0.44	0.56	0.40	0.88	06.0	0.86	0.12	0.13	0.19	0.63	0.61	0.63	0.92	0.17	0.45	0.43
inued.	trans	1.00 -0.87 -0.87 -0.87 0.14	-0.48	-0.27	0.05	-0.46	-0.42	-0.46	0.14	-0.10	-0.71	-0.84	0.76	-0.64	-0.56	-0.55	-0.50	trans	1.00	-0.90	-0.76	0.68	-0.59	-0.63	-0.68	-0.69	-0.76	-0.97	0.21	0.05	0.07	-0.47	-0.69	-0.57	-0.84	-0.21	-0.40	-0.49
): Cont	temp	-0.57 -0.57 0.61 0.65 -0.18 -0.18	0.08	0.03	0.22	0.73	0.70	0.85	0.03	0.52	0.27	0.74	-0.55	0.63	0.66	0.43	60.0	temp	-0.74	0.73	0.72	-0.77	0.59	0.64	0.38	0.58	09.0	0.72	-0.35	0.22	-0.06	0.42	0.89	0.40	0.75	0.06	0.47	0.36
Table (3		trans EC TS pH DO	COD	BOD CO3 ⁴	HCO ₃ ⁻ CI	SO4	K	Ca	NO ₂	NO3	ortho-P	Total-P	SiO ₃ [*]	Mn	Zn	Du	10	tamo	trans	EC	TS	Hd	DO	BOD	C03.4	HCO ₃	SO4"	Na	Ca	Mg	NO2	', HN	ortho-P	Total-P SiO.4	Fe	Mn 7n	Cu	Pb

	Aut	tumn	Wii	nter	Spi	ring	Sun	nmer
Parameter	Ranges	Means±SD	Ranges	Means±SD	Ranges	Means±SD	Ranges	Means±SD
Water Temp.(°C)	19.4-22	21.05±1.07	17.1-18.8	17.9±0.65	22.3-27.5	24.35±1.99	23.4-28.6	25.62±2.19
EC (μ Scm ⁻¹)	255-573	341.8±120.8	237-380	290.3±53.4	260-430	310.8 ± 60.5	264-350	300±34.4
Transparency(cm)	50-190	108.3 ± 53.8	50-220	113.8 ± 72.5	40-220	122.3±71.6	55-240	151.7±91.7
TS (mg/l)	198-764	341±217.9	211-650	319.5±169.5	316-794	470.5±179.7	200-592	286.2±150.5
TDS (mg/l)	140-501	240.7±140	141-400	219.5±101.7	216-495	337.3±114.7	138-398	188.8 ± 102.8
Hd	7.28-8.15	7.61 ± 0.32	7.25-7.66	7.51±0.14	7.6-8.8	8.15±0.43	7.1-7.47	7.27±0.16
DO (mg/l)	6.2-8.6	7.8 ± 0.9	6.0-9.6	8.2±1.3	5.2-9.2	7.8 ± 1.5	4.2-7.5	5.8 ± 1.1
COD (mg/l)	4.8-50.9	13.27±18.46	3.2-38.2	11.5 ± 13.22	5.4-27.4	10.36 ± 8.44	4-28.8	9.04 ± 9.71
BOD (mg/l)	2.5-6.8	4.6±1.6	2.0-5.6	3.6 ± 1.2	2.0-4.9	3.9 ± 1.1	2.1-3.9	3.1 ± 0.7
$CO_{3}^{2-}(mg/l)$	0-4.8	1.47 ± 2.29	0-4.4	0.77 ± 1.78	0-4	1.4 ± 1.63	0-2	0.4 ± 0.79
HCO ₃ ⁻ (mg/l)	118.4-159	136.57±17.94	120-148	128.93±12.62	126-136	129.07±3.65	11.8-137.2	123.47±10.24
CI ⁻ (mg/l)	18.08-36.16	23.57±7.11	20.09-37.16	24.97±6.69	17.07-38.17	22.00±8.13	16.07-38.17	20.02±8.90
SO_4^{2-} (mg/l)	17.78-87.56	30.93±27.79	13.53-91.54	32.63±29.14	9.15-119.13	30.77±43.40	7.96-74.69	20.72±26.50
Na (mg/l)	22.86-49.12	31.03±9.33	23.27-36.96	29.02±5.20	19.62-33.39	23.56±5.03	19.44-28.68	22.67±3.66
K (mg/l)	4.98-7.53	5.76±0.90	4.94-9.10	5.79±1.63	4.03-6.12	4.62±0.76	4.46-8.20	5.29±1.43
Ca (mg/l)	28.86-58.11	35.00±10.47	26.45-64.13	35.08±14.39	24.05-60.92	31.68±14.39	17.31-55.98	31.86±12.79
Mg (mg/l)	13.96-19.48	15.66±2.05	14.79-18.44	15.62 ± 1.40	8.51-17.43	11.47±3.15	8.01-13.58	10.79±2.40
NO ₃ ⁻ (µg/l)	76.71-488.55	194.97±155.4	28.57-1400.50	273.11±552.7	8.57-78.85	25.38±26.63	7.43-50.74	27.50±15.79
$NO_2^{-}(\mu g/I)$	3.02-52.14	20.95±17.53	4.16-22.29	8.51±6.97	3.02-25.69	8.46±8.59	1.13-32.65	11.04 ± 11.06
NH ₃ (mg/l)	0.176-2.229	0.549 ± 0.824	0.148-1.425	0.406 ± 0.501	0.130-1.573	0.497±0.538	0.194-1.798	0.537 ± 0.622
Ortho-P (µg/l)	59.11-119.52	78.82±24.18	46.27-204.02	76.84±62.40	51.41-321.00	106.41 ± 105.4	59.12-356.00	123.59±114.2
Total-P (mg/l)	2.318-2.318	0.574 ± 0.857	1.547-1.547	0.367±0.579	1.784-1.784	0.430±0.668	2.568-2.568	0.613 ± 0.958
SiO ₃ ²⁻ (mg/l)	4.595-7.590	5.823±1.177	0.931-2.007	1.409 ± 0.431	1.745-6.339	3.569±1.577	2.268-6.809	3.572±1.721
Fe (mg/l)	0.169-2.088	0.791 ± 0.731	0.155-2.011	0.875 ± 0.740	0.203-2.136	1.143 ± 0.815	0.403-2.706	1.454 ± 1.032
Mn (μg/l)	33.54-262.47	97.69±83.23	27.53-264.89	82.28±91.81	18.13-259.13	115.31 ± 96.95	53.33-324.02	183.56±110.7
Zn (µg/l)	21.80-69.07	43.43±15.60	25.27-44.11	32.10±6.85	13.73-39.88	24.65±9.43	18.07-69.90	31.31±19.64
Cu (µg/l)	10.23-60.81	38.54±24.1	12.93-55.47	32.94±16.7	14.00-38.56	25.57±8.7	14.00-45.36	26.87±13.7
Pb (µg/l)	10.33-39.51	24.99±10.59	41.67-64.98	52.49±8.06	7.33-31.87	17.03 ± 8.67	11.00-30.63	18.11 ± 6.77

Table (4): Ranges, means and standard deviation of the physical and chemical parameters in the riverbanks Nile water.

		Table (5): W	Vater quality ch	aracteristics o	of the River Nile	before and aft	er High Dam co	nstruction		
Parameter	1933-36 ¹	1964 ²	1966 ²	1976 ²	1979 ²	1987/88 ³	1991 ⁴	1995/96 ⁵	$1999/2000^{6}$	Present results
Temperature °C	N.R.	19-30.5	13-29	14-29	N.R.	12-32	21.1-23	19.2-29.3	N.R	17.1-28.2
Hd	N.R.	7.2-8.3	7.9-8.2	7.2-8.8	7.7-8.5	5.8-9.01	7.4-8.9	6.9-8.6	6.89-8.22	7.4-9.03
E.C µmhos cm ⁻¹	N.R.	208-420	N.R.	311-402	210-320	150-1300	130-385	286.7-1040	256-1050	241-375
DO mg/l	N.R.	7.11-10.07	5.9-13.3	N.R	N.R	4-15	5.1-14.1	1.0-10.8	1.1-9.2	5.5-11
Total alkalinity as CaCO, mg/l	102-175	78.8-177.9	104-180	124-140	109-148	108-238	101-174	79.2-232	120.9-300	11.8-162
Ca mg/l	20-26	46.1-72.5*	52-73*	44-90*	55-80*	26.8-49.8	14.4-38.5	27.3-75.4	28.5-65.7	19.64-36.99
Mg mg/l	7-11	24.3-59.8"	36-64"	28-62"	29-49"	11.3-18.2	2.0-17.9	8.8-31.6	20.1-44.7	7.7-19.25
Chloride mg/l	3-22	6.4-24.6	10-18	14-28	11-22	7.6-59.9	4.0-32	10.84-141.9	20.0-96.2	16.07-29.68
Sulphate mg/l	6-12	N.R.	N.R.	13-20.8	8-18.6	24-42	0.78-8.5	8.22-119.4	16.25-141.4	7.56-59.56
Ammonia mg/l	N.R.	N.R.	0.002-0.07	nil	N.R	0.1-3.2	N.R.	0.19-8.9	0.46-9.76	0.111-2.683
Nitrite mg/l	N.R.	N.R.	0.0-0.02	0.0-0.015	N.R	0.0-0.25	0.004-0.025	0.001-0.22	0.005-0.445	0.0008-0.025
Nitrate mg/l	N.R.	N.R.	N.R.	0.01-0.25	Nil-0.48	0.035-0.823	0.014-0.853	0.002-0.59	0.078-1.01	0.01-0.661
Total-P mg/l	N.R.	N.R.	N.R.	0.065-0.2	0.046-0.14	N.R.	0.052-0.923	0.08-5.38	N.R.	0.048-0.428
Ortho-P mg/l	N.R.	N.R.	0.09-0.2	0.025-0.12	0.007-0.145	0.003-1.08	0.02-0.653	0.023-2.69	0.03-2.109	0.018-0.13
Dissolved silica mg/l	13-26	N.R.	8.6-14	2.4-10.6	3.2-7.4	0.95-48.6	1.22-10.58	1.13-17.4	1.37-9.11	0.47-6.86
		;								
N.R.= Not record	led. * Calciu	im as CaCO ₃	" Magnesiu	m as CaCO3						
¹ Hurst, 1957.		⁴ Abdel-F	Halim, 1993.							
² Shehata & Bade	r, 1985.	5 Abdel-	Satar, 1998.							
³ Abdel-Hamid et	' al., 1992.	⁶ Abdel-	Satar & Elewa,	2001.						

WATER QUALITY ASSESSMENT OF RIVER NILE FROM IDFO TO CAIRO

Fig. (5): Variations of trace metals in the River Nile water

Site

CONCLUSION

The River Nile may be considered mostly as a moderately clean river, but with localized pollution problems. Due to the highly decreased of swept-out effluents property of the River Nile to the sea and rather extensive water use and contamination, the river is in great danger of becoming a waste collecting system. Although the impact of the wastes discharged on ambient water **REFERENCES**

- Abdel-Dayem, S. (1994): "Water quality issues in Egypt", conference on Italian– Egyptian Study Days on the Environment, Cairo, 9–20 October, pp. 81–9.
- Abdel-Halim, A. M. (1993): "Studies on the Physico-Chemical Changes of the River Nile at the Region from Isna to El-Kanater El-Khyria, Egypt", M.Sc. Thesis, Faculty of Science, Alexandria University, Egypt.
- Abdel-Hamid, M.I.; Shaaban-Dessouki, S.A. and Skulberg, O.M. (1992): Water quality of the River Nile in Egypt. 1. Physical and chemical characteristics, Archiv. Hydrobiol., 90: 283-310.
- Abdel-Satar, A. M. (1998): Distribution of some chemical elements in River Nile environments at Great Cairo Region. Ph. D. Thesis, Faculty of Science, Cairo Univ.
- Abdel-Satar, A.M. (2001): Environmental studies on the impact of the drains effluent upon the southern sector of Lake Manzalah, Egypt, Egypt J. Aquat. Biol. & fish., 5(3): 17-30.
- Abdel-Satar, A.M. and Elewa, A.A. (2001): Water quality and environmental assessments of the River Nile at Rossetta Branch, The Second International Conference and Exhibition for Life and Environment, 3-5 April: 136-164.
- Abdel-Shafy, H.I. and Aly, R.O. (2002): Water issue in Egypt: Resources, pollution and protection endeavors, Cejoem, 8(1): 3–21.

quality of the Nile has not been significant in recent years due to the high self-assimilation capacity of the Nile water. Special attention should be given to mitigate pollution from these sources as their effects may become significant during low flow years. Therefore, constant monitoring of river water quality is needed to record any alteration in the quality and outbreak of health disorders.

- Abdo, M.H. (2004a): Environmental studies on the River Nile at Damietta Branch region, Egypt, J. Egypt Acad. Soc. Environ. Develop., (D-Environmental Studies), 5(2): 85-104.
- Abdo, M.H. (2004b): Distribution of some chemical elements in the recent sediments of Damietta Branch, River Nile, Egypt, J. Egypt Acad. Soc. Environ. Develop., (D-Environmental Studies), 5(2): 125-146.
- Agricultural Policy Reform Program (2002): Survey of Nile system pollution sources, Ministry of water resources and irrigation, Agricultural Policy Reform Program -Water Policy Program, Report No. 64.
- American Public Health Association (APHA) (1995): Standard methods for the examination of water and wastewater, New York, 1193pp.
- Boughriet, A., Ouddane, B., Wartel, M. and Leman, G. (1992): Variability of dissolved Mn and Zn in the Seine estuary and chemical speciation of these metals in suspended matter, Wat. Res., 26 (10), 1359-1378.
- Deai, J., Yida, T., Gong, Y., Jianrong, Z. and Yicheng, S. (1991): Factors affecting the relationship between the NBOD values and the amounts of nitrogenous pollutants: A field study on the Lee River, Wat. Res., 25: 485-489.
- Diaz, O. A., Reddy, K. R. and Moore Jr, P. A. (1994): Solubility of inorganic phosphorus in stream water as influenced by pH and calcium concentration. Wat. Res., 28 (8), 1755-1763.

- Dudka, S. and Adriano, D.C. (1997). Environmental impacts of metal ore mining and processing: a review, J. Environ. Qual., 26: 590-602.
- Elewa, A.A. and Ghallab, M.H. (2000): Water-sediment interaction infront of El-Rahawy drain, Rosetta branch, River Nile, Egypt, presented at 4th international symposium on sediment quality assessment. Otsu, Japan, October, 24-27.
- Elewa, A.A. and Gohar, M.E.M. (1999): Environmental factors affecting the precipitation and dissolution of Fe, Mn, Zn, Cu, Pb and Cd in River Nile at Damietta Branch, Bull. Fac. Sci. Zagazig Univ., 21(2): 114-136.
- Elewa, A.A.; Masoud, M.S and Abdel-Halim, A.M. (1995): Liminological study on the Nile water of Egypt, Bull. N.R.C., Egypt, 20(4): 437-450.
- El-Gohary, F.A. (1983): Water quality changes in River Nile and impacts of waste discharge, Water resources development in Egypt, Proceeding of the international conference, June 6-8, Cairo: pp. 643-656.
- El-Gohary, F.A. (1994): "Industrial wastewater management in Egypt", conference on Italian–Egyptian study days on the environment, 9–20 October, Cairo.
- El-Sherbini, A.; El-Mottassem, M. and Sloterdijk, H. (1996): Water quality condition of the River Nile, In: Management and development of major rivers, Shady, A.M.; El-Mottassem, M.; Abdel-Hafiz, E.A. and Biswas, A.K. (eds.), Oxford Univ., Calcutta.
- Fishar, M.R.A. and Khalifa, U.S.A. (2003) (eds.): Status of biodiversity of River Nile, Workshop hold at British Council, 9 December, Cairo, Egypt. 80 pp
- Hurst, H.E. (1957): The Nile. 2nd ed., Constable, London.
- Ibrahim, S.A. and Tayel, S.I. (2005): Effect of heavy metals on gills of tilapia ziilli inhabiting the River Nile water (Damietta branch and El-Rahawey drain, Egypt J. Aquat. Biol. &fish., 9(2): 111-128.

- Issa, Y.M.; Elewa, A.A.; Shehata, M.B. and Abdel-Satar, A.M. (1997): Factors affecting the distribution of some major and minor elements in River Nile at Greater Cairo Area, Egypt J. Anal. Chem., 6: 58-68.
- Masoud, M.S., Elewa, A.A. and Abdel-Halim A.M. (2002): Some environmental analysis on Nile water, J. Saudi Chem. Soc., 6(3):377-398.
- Masoud, M.S.; Elewa, A.A. and Awad, F.K. (1994): Distribution of some trace metals in River Nile Waters, Bull. Fac. Sci., Assiut Univ., 23 (1-B): 67-82.
- Moon, C. H., Lee, Y. S. and Yoon, T. H. (1994): Variation of trace Cu, Pb and Zn in sediment and water of an Urban stream resulting from domestic effluents. Wat. Res., 28 (4), 985-991.
- National Water Research Centre (NWRC), WL/DELFT Hydraulics (2000): "National Water Resources Plan for Egypt, Water Quality and Pollution Control". Technical Report No. 5.
- Ramanathan, A.L.; Vaithiyanathan, P.;
 Subramanian, V. and Das, B.K. (1994):
 Nature and ransport of solute load in the Cauvery River Basin, India, Wat. Res., 28(7): 1585-1593.
- Roos, J.C. and Pieterse, A.J.H. (1995): Salinity and dissolved substances in the Vaal River at Balkfontein, South Africa, Hydrobiol., 306: 41-51.
- Saad, M.A.H. (1973): A limnological studies on Nasser Lake and the Nile in Egypt, Water supply and Management, 4: 81-92.
- Saad, M.A.H. and Abdel-Moati, M. A. (1997): Nutrient Salts in the Damietta Estuary of the Nile, an Area under Stress, Journal of Conference Abstracts, 2(2): BIOGEOMON '97.
- Saad, M.A.H. and Goma, R.H. (1994): Effects of the High Dam and Aswan cataract on the chemical composition of the Nile waters. I: Major anions, Verh. Internat. Verein. Limnol., 25: 1812-1815.
- Sabae, S.Z. (2004): Monitoring of microbial pollution in the River Nile and the impact of some Human activities on its waters,

Proc. 3rd Int. Conf. Biol. Sci. Fac. Sci. Tanta Univ., 28-29 April, vol. 3: 200-214.

- Sabae, S.Z. and Abdel-Satar, A.M. (2001): Chemical and Bacteriological studies on El-Salam Canal, Egypt, J. Egypt. Acad. Soc. Environ. Develop., 2(1): 173-197.
- Samecka-Cymerman, A. and Kempers, A. J. (2001): Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification, Sci. Total Environ. 281: 87–98.
- Sanchez Lopez, F. J., Gil Garcia, M.D., Martinez Vidal, J. L., Aguilera, P.A... and Frenich, A.G. (2004): Assessment of metal contamination in Donana National Park (Spain) using crayfish (Procamburus Clarkii), Environ. Monitoring and Assessment, 93: 17–29.
- Sharpley A.N; Smith, S.J. and Naney, J.W. (1987): Environmental impact of

agricultural nitrogen and phosphourus use, J. Agric. Fd. Chem., 35: 812-817.

- Shehata, S.A. and Bader, S.A. (1985): Effect of River Nile water quality on algal distribution at Cairo, Egypt, Environ. Internat., 11: 465-474.
- Toullabah, H.E. (1996): Ecological studies on the River Nile phytoplankton in relation to physico-chemical characteristics at the area between Qena and Delta Barrage, Ph.D. Thesis, Faculty of Girls, Ain-Shams University, Egypt.
- Vander Weijden, C.H. and Middelburg, J.J. (1989): Hydrogeochemistry of the River Rhine: Long term and seasonal variability, elemental budgets, base levels and pollution, Wat. Res., 23: 1247-1266.
- Wahaab R.A. and Badawy M.I. (2004): Water quality assessment of the River Nile system: an overview, Biomed Environ. Sci.; 17(1):87-100.