Optimum growth conditions of three isolated diatom species;

 Skelatonema costatum, Chaetoceros calcitrans and Detonulla confervacea and their utilization as feed for marine penaeid shrimp larvaeSoliman H. Abdel Rahman*; F. A. Abdel Razek*, A. E. Abou Zeid** and Mohamed Ashour **
*National Institute of Oceanography and Fisheries, Alex Branch
** Faculty of Agriculture,, Tanta University
** microalgae_egypt@yahoo.com

Received $24^{\text {th }}$ September 2009, Accepted $12^{\text {th }}$ December 2010

Abstract

Microalgae are playing a very important role as live food for fish and shrimp larvae in marine hatcheries. In this study; three diatom species; Skelatonema Costatum ($2-5 \mu \mathrm{~m}$), Chaetoceros calcitrans $(2-3 \mu \mathrm{~m})$ and Detonulla confervacea $(6-15 \mu \mathrm{~m})$ were isolated from the Eastern Harbor of Alexandria, Egypt and evaluated as feed for shrimp larvae. Scanning electron microscope was used to support the identification process of the isolated diatom species. Effects of salinity, temperature, illumination and culture medium on growth of the three diatom species were conducted. The optimum salinity for highest growth rate of S. costatum, C. calcitrans and D. confervacea was achieved at $35 \mathrm{ppt}, 30 \mathrm{ppt}$ and 35 ppt , respectively; optimum temperature was achieved at $20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively; and optimum illumination (light duration and light intensity) was 24 h Light / 750 Lux for all species. C. calcitrans showed the highest growth rate with a modification of vitamin amount (Di- F/2 standard vitamin) and silicate amount (Tri- $\mathrm{F} / 2$ standard silicate). Mass culture in outdoor tanks for the three species was conducted at high temperature $\left(27-34^{\circ} \mathrm{C}\right)$ in summer season. D. confervacea showed the highest growth rate compared with other diatom species. The three diatoms were evaluated as feed for marine shrimp larvae Penaeus japonicus from the first protozoa stage to the first postlarvae stage. D. confervacea resulted in an equal survival, development and metamorphosis of penaeid shrimp larvae Penaeus japonicus, when compared with other diatoms. These results suggest that D. confervacea can be used as feed for marine shrimp larvae Penaeus japonicus, especially at high temperaturein summer season.

Keywords: Microalgae, marine shrimp larvae, Skelatonema costatum, Chaetoceros calcitrans, Detonulla confervacea

1. Introduction

Microalgae are playing a very important role as live food for fish and shrimp larvae in marine hatcheries. Not all algal species are equally useful in supporting the growth and survival of fish and shrimp larvae. Suitable algal species have been selected based on their mass-culture potential, cell size, digestibility, and overall food value for the feeding animal. However, out of the 80,000 species of microalgae, only $50-60$ species are commercially important as live food and cultured as pure strains in intensive systems. There are several isolation methods techniques for isolation of microalgae and diatoms; serial dilution method (Allen \&Nelson, 1952; Droop, 1954, Sournia1971), sicropipette washing technique (Phang and Chu 1999), centrifugation method (Phang and Chu 1999; M. Parvin 2007) and finally agar plating method (Phang and Chu 1999). Isolation of algal species is not simple because
of the small cell size and the association with other epiphytic species. At present, most hatcheries produce their own microalgae on site and some of them have developed the process of selling algal concentrate to other hatcheries. Therefore, there are no doubts that isolated important microalgae play an important role in aquaculture development. Growth rate of microalgae is influenced by environmental conditions (S.M. Reneud et al., 2002). The main environmental conditions controlling microalgae growth rate are light, nutrients and temperature (Tzovenis et al., 1997; Zhu et al., 1997) but other conditions can be important to some species such as salinity (Chu et al., 1996). Silicate is specifically used for the growth of diatoms that utilize this compound for production of an external shell. For outdoor mass culture, it is important to choose a species of algae that tolerate the range of temperature likely to prevail at the site (Wendy and Kevan 1991). On the other hand, especially in hot season, these selected species must be give a high growth tare and a
high final yield. Payer et al. (1980) investigated the direct and indirect effect of temperature on a number of species and strains of algae in order to select those that would be suitable for hatcheries productions. In addition to find strain- specific results, they concluded that temperature however can be important in determining which species will predominate in open outdoor culture at local conditions (Goldman and Ryther 1977, Goldman 1979, Goldman and Mann 1980, De Pauw et al. 1980 and Witt et al. 1981)

Hudinaga (1942) cited that the diatoms are the best food that meets the requirements for penaeid shrimp larvae. The food used in most shrimp hatcheries for these larvae consists of one or more microalgae species supplied at different concentrations and with different feeding routines depending on the shrimp species, on the larval stage and also on the personal experience of the operators in charge of each hatchery (AguirreHinojosa et al., 1999). The most common diatoms species used in larviculture of penaeid shrimp are Chaetoceros calcitrans and Skeletonema costatum. Phytoplankton density of larval rearing water is another interesting point to be discussed. Usually in the larviculture of penaeid shrimp larvae, the recommended plankton density varies with the larval stage, type of diatoms and culture system. Two questions of continuing importance's are; what is the best diatom source and what is the ideal cell concentration of diatom that should be introduced for each stage of penaeid shrimp larval.

The present study was conducted to investigate the effect of different important growth conditions (salinity, temperature, illumination "light duration and light intensity" and nutrients) on growth rate of the three isolated diatoms species. The present study investigated the survival, development and metamorphosis of penaeid shrimp larvae Penaeus japonicus that fed on six different cell concentrations of three isolated diatoms. The diatom D. confervacea was used for the first time as feed for marine shrimp larval Penaeus japonicus.

2. Material and Methods

2.1. Isolation and purification

The experiments of the present study were conducted in Invertebrate Culture Laboratory, National Institute of Oceanography and Fisheries (NIOF), Alexandria Branch. Isolation of diatoms was conducted in spring (March - April 2006) when the average of water temperature is $20 \pm 2^{\circ} \mathrm{C}$ and salinity 34 ppt . Scanning electron microscope (SEM- JEOL-JSM5300) was used to identify diatoms strains according to Ismael (1998). Three diatom strains; Skelatonema costatum (cell size 2-5 $\mu \mathrm{m}$), Chaetoceros calcitrans (2$3 \mu \mathrm{~m})$ and Detonulla confervacea $(6-15 \mu \mathrm{~m})$ were isolated and purified by serial dilution method (Allen \& Nelson, 1952; Droop, 1954 and Sournia, 1971) and

Micropipette Washing method (Phang and Chu 1999) . Test tubes containing filtered seawater enriched with F/2 standard medium (Guillard and Ryther 1993) were inoculated with 1 mL of diluted diatom culture. The colonies were kept to develop for 10 to 15 days under controlled conditions of temperature $20 \pm 1^{\circ} \mathrm{C}$ and continuous illumination at 750 lux.

2.2. Optimum growth conditions (indoor)

2.2.1. General Growth Conditions

The growth experiments were conducted to investigate the effect of different salinity, temperature, illumination (light intensity and light duration), and the effect of modified $\mathrm{F} / 2$ nutrient medium (vitamins and silicate) on relative growth rate (according to Kratz and Myers, 1955) for the three isolated species. Initial cell concentrations of diatoms are shown in Table 1.

All experiments were conducted without aeration in conical flasks 250 ml (three replicates for each treatment) filled with 100 ml of culture medium. Cell count was examined daily by haemocytometer. All experiments ended when the growth rate had reached to the decline phase.

2.2.2. Effect of temperature

Temperature experiment was conducted at: $15^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}$ (control), $25^{\circ} \mathrm{C}$, and $30^{\circ} \mathrm{C}$. Each level was contacted under controlled conditions of salinity 34 ± 1 ppt and continuous illumination at 750 Lux, using F/2 standard nutrients medium (Guillard and Ryther, 1993).

2.2.3. Effect of salinities

Salinity experiment was conducted at: $20 \mathrm{ppt}, 25 \mathrm{ppt}$, 30 ppt and 35 ppt (control). Each level was tested under controlled conditions of temperature $20 \pm 1^{\circ} \mathrm{C}$ and continuous illumination at 750 Lux, using F/2 standard medium (Guillard and Ryther, 1993). Distilled water was used to dilute seawater to reach the three levels of salinities $20 \mathrm{ppt}, 25 \mathrm{ppt}$ and 30 ppt .

2.2.4. Effect of illuminations

Illumination was conducted at three levels of light intensities; 750 lux (control), 1500 lux and 3000 Lux at 24 h light duration. As well as, illumination was conducted at three levels of light durations; 6 h light: 18 h dark, 12 h light: 12 h dark and 24 h light: no dark (control), those were at light intensity of 750 lux. Light intensity was measured by Luxymeter. Illumination experiments were conducted by one to six fluorescent lamps 120 W and timer to control the light duration and light intensity. All illumination experiments were conducted under controlled conditions of temperature $20 \pm 1^{\circ} \mathrm{C}$ and salinity 34 ± 1 ppt using $\mathrm{F} / 2$ standard medium (Guillard and Ryther 1993).

2.2.5. Effect of modified F/2 Nutrient Medium

The composition of $\mathrm{F} / 2$ medium was modified to examine the effect of increasing vitamins and silicate amounts on algal growth rate. Vitamins and silicate were added at 2 folds and 3 folds of the F/2 standard medium concentrations.

2.3. Mass culture (outdoor)

Outdoor mass culture experiment was conducted in nine plastic tanks (one ton capacity, three replicates for each species) filled with 500 L of seawater culture. The mass culture experiment was carried out during July 2007 at high temperature conditions ranged between $27-34^{\circ} \mathrm{C}$, salinity $34 \pm 1 \mathrm{ppt}$ and sunlight intensity of 25000-23000 Lux, using nutrient medium according to Ton Kay Heok (1982).

2.4. Penaeus japonicus methods

The three isolated diatoms species were used as feed for Penaeus japonicus larvae from the first zoea stage to the first post larvae stage.

2.4.1. Diatoms Cell Densities

Shrimp larvae were fed on diatoms with different cell densities as shown in Table 2

2.5. Larval rearing Experiment

Penaeus japonicus nauplii were obtained from a single matured female (hatched in Invertebrate Culture Lab., Alex. Branch, NIOF) at the stage of N5. When 90% of the larvae reached to zoea one stage, 450 vigorous zoea were collected and placed in separate containers (triplicates container for each treatment) with initial concentration of 150 larvae/L (Pina et al., 2005) during experiment. Larvae were maintained under controlled conditions of (temperature $27 \pm 1^{\circ} \mathrm{C}$, salinity 34 ppt , strong aeration and 1000 Lux / 24h.). Constant algae counts were maintained through all the experiment period. When the larvae move from stage to another (the first appearance of new development stage), samples of $10-15$ larvae were collected to determine Development index (DI) and Total length (TL). Survival rate (SR) was calculated as a percent between live larvae and the total initial larvae in each treatment. Total length (TL, mm) was measured under a microscope with a calibrated eyepiece. Development index (DI) for larvae was calculated according to Villegas and Kanazawa, 1979 by the following equation:-

$$
D I=n^{-1} \text { SUM ni }
$$

Were $\mathrm{I}=$ absolute value for each larvae stage ($\mathrm{N} 5=0, \mathrm{Z} 1=1, \mathrm{Z} 2=2, \mathrm{Z} 3=3, \mathrm{M} 1=4, \mathrm{M} 2=5, \mathrm{M} 3$ $=6$, PL1 $=7$), $n i=$ number of larvae of each stage $; n=$ number of larvae in the sample.

3. Results

3.1. Isolations and identification of isolated diatoms

Three diatoms species; Skelatonema costatum, Chaetoceros calcitrans and Detonulla converfacea were isolated from the Eastern Harbor of Alexandria, Egypt ($31^{\circ} 13^{\prime} 48^{\prime \prime} \mathrm{N}, 29^{\circ} 53^{\prime} 12^{\prime \prime} \mathrm{E}$). Light and scanning electron microscope photos show the three isolated species in Figures (1, 2 and 3).

3.2. Optimum Growth Conditions (Indoor)

3.2.1. Effect of salinity

S. costatum

The highest growth rate was observed at treatment 35 ppt (control), (0.085 ± 0.002 division/day) after three days and the lowest was observed at treatment 25 ppt (0.058 ± 0.002 division/day) after five days, as shown in Figures (4, 5, 6 and 7)

D. confervacea

The highest growth rate was observed at treatment 35 ppt (control), (0.099 ± 0.009 division/day) after twelve days and the lowest was observed at treatment $20 \mathrm{ppt}(0.085 \pm 0.006$ division/day) after four days, respectively, as shown in Figures (8, 9, 10, and 11).

C. calcitrans

The highest growth rate was observed at treatment 30 ppt (0.076 ± 0.002 division/day) after four days and the lowest was observed at treatment 25 ppt (0.070 ± 0.002 division/day) after six, as shown in figures (12, 16, 14 and 15).

3.2.2. Effect of temperature

S. costatum

The highest growth rate was observed at treatment $20^{\circ} \mathrm{C}$ (control), (0.085 ± 0.002 division/day) after three days and the lowest was observed at treatment $15^{\circ} \mathrm{C}$ (0.058 ± 0.002 division/day) after three days, as shown Figures (16, 17, 18 and 19).

D. Converfacea

The highest growth rate was observed at treatment $20^{\circ} \mathrm{C}$ (control), (0.099 ± 0.009 division/day) after twelve days and the lowest was observed at treatment $30^{\circ} \mathrm{C}$ (0.070 ± 0.006 division/day) after fife days, as shown Figures (20, 21, 22 and 23).

C. calcitrans

The highest growth rate was observed at treatment $25^{\circ} \mathrm{C}(0.083 \pm 0.002$ division/day) after three days and the lowest was observed at treatment $30^{\circ} \mathrm{C}$ (0.073 ± 0.002 division/day) after two days, as shown Figures (24, 25, 26 and 27).

Table 1: Initial cell concentrations of the isolated diatoms

Species	Cell Diameter $(\mu \mathrm{m})$	Cell Concentration $\left(10^{4}\right.$ cell $\left.1 / \mathrm{ml}\right)$	
		Indoor Experiment	Outdoor Experiment
S. costatum	$2-5 \mu \mathrm{~m}$	22 ± 1.4	9.5 ± 0.5
C. calcitrans	$2-3 \mu \mathrm{~m}$	25 ± 1.9	10 ± 0.8
De. confervacea	$6 \sim 15 \mu \mathrm{~m}$	6 ± 0.7	3.7 ± 0.5

Table 2: Cell concentration of the tested diatoms

Algal cell concentrations	1	2	3	4	5	6
D. confervacea	50000	100000	200000	300000	400000	500000
S. costatum	125000	25000	500000	750000	1000000	1250000
C. calcitrans	125000	25000	500000	750000	1000000	1250000

Figure 1: Skeletonema Costatum ($6-15 \mu \mathrm{~m}$), light microscope (A) and scanning electron microscope (B).

Figure 2: Chaetoceros calcitrans (2-5 $\mu \mathrm{m}$), Light microscope (A) and scanning electron microscope (B).

Figure 3: Detonulla confervacea $(6-15 \mu \mathrm{~m})$, Light microscope (A) and scanning electron microscope (B).

Figure 4: The effect of salinity 35ppt (control) on growth rate of S. costatum

Figure 6: The effect of salinity 25 ppt on growth rate of S. costatum

Figure 8: The effect of salinity 35ppt (control) on growth rate of De. confervacea

Figure 5: The effect of salinity 30 ppt on growth rate of S. costatum

Figure 7: The effect of salinity 20 ppt on growth rate of S. costatum

Figure 9: The effect of salinity 30 ppt on growth rate of De. confervacea

Figure 10: The effect of salinity 25 ppt on growth rate of $D e$. confervacea

Figure 12: The effect of salinity 35 ppt (control) on growth rate of C. calcitrans

Figure 14: The effect of salinity 25 ppt on growth rate of C. calcitrans

Figure 11: The effect of salinity 20 ppt on growth rate of De. confervacea

Figure 13: The effect of salinity 30 ppt on growth rate of C. calcitrans

Figure 15: The effect of salinity 20 ppt on growth rate of C. calcitrans

Figure 16: The effect of temperature $15^{\circ} \mathrm{C}$ on growth rate of S .costatum

Figure 18: The effect of temperature $25^{\circ} \mathrm{C}$ on growth rate of S.costatum

Figure 17: The effect of temperature $20^{\circ} \mathrm{C}$ (control) on growth rate of S.costatum

Figure 19: The effect of temperature $30^{\circ} \mathrm{C}$ on growth rate of S .costatum

Figure (20): The effect of temperature $15 \% \mathrm{C}$ on growth rate of De. confervacea

Figure (21): The effect of temperature $20^{\circ} \mathrm{C}$ (control) on growth rate of De confenvacea

Figure (22): The effect of temperature $25^{\circ} \mathrm{C}$ on growth rate of De. confenacea

Figure 24: The effect of temperature $15^{\circ} \mathrm{C}$ on growth rate of C. calctirans

Figure 26: The effect of temperature $25^{\circ} \mathrm{C}$ on growth rate of C. calctirans

3.2.3. Effect of illumination

3.2.3.1. Effect of light duration

S. costatum

The highest growth rate was observed at treatment 24 h light / 750Lux (control), (0.085 ± 0.002 division/day) after three days and the lowest was observed at treatment 6h light: 18h dark / 750 Lux (0.047 ± 0.001 division/day) after four days, as shown Figures (28, 29 and 30).

D. confervacea

The highest growth rate was observed at treatment 24 h light / 750Lux (control), (0.099 ± 0.009 division/day) after twelve days and the lowest was observed at treatment 6h light: 18h dark / 750 Lux

Figure (23): The effect of temperature 302 C on growth rate of De. confenacea

Figure 25: The effect of temperature $20^{\circ} \mathrm{C}$ (control) on growth rate of C. calcitrans

Figure 27: The effect of temperature $30^{\circ} \mathrm{C}$ on growth rate of C. calcitrans
(0.055 ± 0.007 division/day) after three days, as shown in Figures (31, 32 and 33).

C. calcitrans

The highest growth rate was observed at treatment 24h light / 750Lux (control), (0.073 ± 0.003 division/day) after four days and the lowest was observed at treatment 6h light:18h dark / 750 Lux (0.060 ± 0.002 division/day) after nine days, as shown in Figures (34, 35 and 36).

3.2.3.2. Effect of light Intensity

S. costatum

The highest growth rate was observed at treatment 750Lux / 24h (control), (0.085 ± 0.002 division/day) after three days and the lowest was observed at
treatment 3000 Lux / 24h (0.061 ± 0.001 division/day) after four days, as shown in Figures (37, 38 and 39).

D. confervacea

The highest growth rate was observed at treatment 750 Lux/ 24h (control), (0.099 ± 0.009 division/day) after twelve days and the lowest was observed at treatment 1500 Lux/ 24 h (0.078 ± 0.016 division/day) after four days, as shown in Figures (40, 41 and 42).

C. calcitrans

The highest growth rate was observed at treatment 24 h light / 750Lux (control), $\quad(0.073 \pm 0.003$ division/day) after four days and the lowest was observed at treatment 3000 Lux/ 24h (0.063 ± 0.002 division/day) after nine days, as shown in Figures (43, 44 and 45).

3.2.4. Effect of modified F/2 Nutrient Medium

3.2.4.1. Effect of modified F/2 Vitamin Nutrient Medium

S. costatum

The highest growth rate was observed at treatment $\mathrm{F} / 2$ standard vitamin (control), (0.085 ± 0.002 division/day) after three days and the lowest was observed at treatment Tri-vitamin (0.064 ± 0.003 division/day) after four days, as shown in Figures (46, 47 and 48).

D. confervacea

The highest growth rate was observed at treatment $\mathrm{F} / 2$ standard vitamin (control), (0.099 ± 0.009 division/day) after twelve days and the lowest was observed with addition of Tri-vitamin $(0.090 \pm 0.008$
division/day) after thirteen days, as shown in Figures (49, 50 and51).

C. calcitrans

The highest growth rate was observed at treatment Di- vitamin (0.079 ± 0.002 division/day) after three days and the lowest was observed at treatment Tri-vitamin (0.073 ± 0.002 division/day) after three days, as shown Figures (52, 53 and 54).

3.2.4.2. Modified F/2 Silicate Nutrient Medium

S. costatum

The highest growth rate was observed at treatment $\mathrm{F} / 2$ standard silicate (control), (0.085 ± 0.002 division/day) after three days and the lowest was observed with addition of Tri-silicate $(0.075 \pm 0.002$ division/day) after four days, as shown in Figures (55, 56 and 57).

D. confervacea

The highest growth rate was observed at treatment $\mathrm{F} / 2$ standard silicate (control), (0.099 ± 0.009 division/day) after twelve days and the lowest was observed with addition of Tri-silicate $(0.077 \pm 0.008$ division/day) after eleven days, as shown in Figures (58, 59 and 60).

C. calcitrans

The highest growth rate was observed at treatment Tri-silicate (0.077 ± 0.002 division/day) after three days and the lowest was observed with addition of $\mathrm{F} / 2$ standard silicate (control), $(0.073 \pm 0.003$ division/day) after four days, as shown in Figures (61, 62 and 63).

Figure 28: The effect of light duration 6 h Light/ 18 h Dark /750 Lux on growth rate of S. costatum

Figure 29: The effect of light duration 12h Light/12h Dark/750 Lux on growth rate of S. costatum

Figure 30: The effect of light duration 24 h
Light/750 Lux (Control) on growth rate of S. costatum

Figure 31: The effect of light duration 6h Light/18h Dark /750 Lux on growth rate of De. confervacea

Figure 32: The effect of light duration 12h Light/12h Dark /750 Lux on growth rate of De. confervacea

Figure 33: The effect of light duration 24 h Light/750 Lux (Control) on growth rate of De. confervacea

Figure 36: The effect of light duration 24 h Light/750 Lux Control) on growth rate of C. calctirans

Figure 39: The effect of light intensity 3000 Lux/24 h on growth rate of S. costatum

Figure 40: The effect of light intensity $750 \mathrm{Lux} / 24 \mathrm{~h}$ (control) on growth rate of De. confervacea

Figure 35: The effect of light duration 12h Light/12 h Dark/750 Lux on growth rate of C. calctirans

Figure 38: The effect of light intensity $1500 \mathrm{Lux} / 24 \mathrm{~h}$ on growth rate of S. costatum

Figure 41: The effect of light intensity 1500 Lux / 24 h on growth rate of De. confervacea

Figure 42: The effect of light intensity 3000 Lux/24 hon growth rate of De. confervacea

Figure 43: The effect of light intensity 750 Lux/24 h (control) on growth rate of C. calctirans

Figure 46: The effect of modified vitamin concentration ($\mathrm{F} / 2$ standard vitamin "control") on growth rate of S. costatum

Figure 44: The effect of light intensity $1500 \mathrm{Lux} / 24 \mathrm{~h}$ on growth rate of C. calctirans

Figure 47: The effect of modified vitamin concentration (Tri-vitamin) on growth rate of S. costatum

Figure 45: The effect of light intensity 3000 Lux $/ 24 \mathrm{~h}$ on growth rate of C. calctirans

Figure 48: The effect of modified vitamin concentration (Di-vitamin) on growth rate of S. costatum

Figure 49: The effect of modified vitamin concentration ($\mathrm{F} / 2$ standard vitamin "control") on growth rate of De. confervacea

Figure 50: The effect of modified vitamin concentration (Divitamin) on growth rate of De. confervacea

Figure 51: The effect of modified vitamin concentration (Trivitamin) on growth rate of De. confervacea

Figure 52: The effect of modified vitamin concentration ($\mathrm{F} / 2$ standard vitamin "control") on growth rate of C. calcitrans

Figure 53: The effect of modified vitamin concentration (Di-vitamin) on growth rate of C. calctirans

Figure 56: The effect of modified silicate concentration (D- silicate) on growth rate of S. costatum

Figure 54: The effect of modified vitamin concentration (Tri-vitamin) on growth rate of C. calctirans

Figure 55: The effect of modified silicate concentration ($\mathrm{F} / 2$ standard silicate) on growth rate of S. costatum

Figure 57: The effect of modified silicate concentration (Tri- silicate) on growth rate of S. costatum

Figure 58: The effect of modified silicate concentration ($\mathrm{F} / 2$ standard silicate) on growth rate of

De. confervacea

Figure 59: The effect of modified silicate concentration (Di- silicate) on growth rate of De. confervacea

Figure 60: The effect of modified silicate concentration (Di- silicate) on growth rate of De. confervacea

3.3. Outdoor Mass Culture Results

The highest growth rate (0.140 ± 0.011) was observed at D. confervacea after eleven days, followed by S. costatum (0.094 ± 0.007) after three days and the lowest growth rate C. calctirans (0.092 ± 0.008) was observed at C. calctirans after five days, as shown in Figure (64).

3.4. Feeding experiment of Penaeus japonicus larvae

STAGE Z1: Z2

Development index (DI)

The highest mean of DI noticed was in D. confervacea (1.76 ± 0.08), followed by C. calcitrans (1.74 ± 0.11) and the lowest was in S. costatum (1.64 ± 0.25). The highest DI observed was in treatment number four (1.87 ± 0.125) of C. calcitrans and four (1.87 ± 0.001) of S. costatum too. The lowest DI observed was in treatment number six (1.34 ± 0.054) of S. costatum. The duration time required for DI was equal ($24 \pm 0.00 \mathrm{~h}$) in all species and all treatments too, as shown in Figure (65).

Survival rate (SR)

The highest mean of SR noticed was in D. confervacea ($83.35 \pm 7.77 \%$), followed by C. calcitrans ($66.58 \pm 22.55 \%$) and the lowest was in S. costatum $(50.66 \pm 32.06 \%)$. The highest SR observed was in treatment number three $(96.00 \pm 4.00 \%)$ and four ($92.66 \pm 6.00 \%$) of C. calcitrans and the lowest was in treatment number one (11.75 $1.54 \%)$, six ($27.72 \pm 2.39 \%$) and two ($33.18 \pm 2.49 \%$) of S. costatum, as shown in Figure (66).

Total length (TL)

The highest mean of TL observed was in C. calcitrans ($1.77 \pm 0.13 \mathrm{~mm}$), followed by S. costatum $(1.62 \pm 0.26 \mathrm{~mm})$ and the lowest was in D. confervacea $(1.52 \pm 0.07 \mathrm{~mm})$. The highest TL observed was in treatment number four ($1.91 \pm 0.001 \mathrm{~mm}$) of C. calcitrans and the lowest was in treatment number six $(1.25 \pm 0.034 \mathrm{~mm})$ of S. costatum, as shown in Figure (67).

STAGE Z2: Z3

Development index (DI)

The highest mean observed of DI was in D. confervacea (2.81 ± 0.12), followed by S. costatum (2.63 ± 0.32) and the lowest was in C. calcitrans (2.43 ± 0.17), as shown in figure (68). The highest DI observed was in treatment number five (2.95 ± 0.010) of S. costatum and the lowest was in treatment number one (2.11 ± 0.133) of C. calcitrans and one (2.11 ± 0.130) of S. costatum too. The highest mean observed of required duration time for DI was in S. costatum ($28 \pm$ 9.79 h) and the low mean observed of duration time for DI was an equal in rest of species (24 h) and in rest treatments $(24 \mathrm{~h})$. The highest mean observed of required duration time was in treatment number one (48 ± 0.00) of S. costatum, as shown in Figure (68).

Survival rate (SR)

The highest mean of SR noticed was in S. costatum ($78.06 \pm 10.23 \%$), followed by C. calcitrans ($77.41 \pm 5.70 \%$) and the lowest was in D. confervacea $(75.52 \pm 5.00 \%)$. The highest SR observed was in treatment number two (96.66 ± 0.66) of S. costatum and the lowest was in treatment number one ($67.94 \pm 4.57 \%$) of D. confervacea and one ($67.90 \pm 1.46 \%$) of C. calcitrans too, as shown in Figure (69).

Total length (TL)

The highest mean of TL observed was in S. costatum ($3.01 \pm 0.09 \mathrm{~mm}$) followed by C. calcitrans $(2.66 \pm 0.20 \mathrm{~mm})$ and the lowest mean of TL noticed was in D. confervacea ($2.09 \pm 0.27 \mathrm{~mm}$). The highest TL observed was in treatment number four (3.14 ± 0.015 mm) of S. costatum and the lowest was in treatments number one ($1.77 \pm 0.06 \mathrm{~mm}$) of D. confervacea as shown in Figure (70).

STAGE Z3:M1

Development index (DI)

The highest mean observed of DI was in D. confervacea (3.45 ± 0.33), followed by S. costatum
(3.37 $\pm 0.19)$ and the lowest was in C. calcitrans (3.26 ± 0.12). The highest DI observed was in treatment number one (3.95 ± 0.015) of D. confervacea and the lowest was in treatment number six (3.09 ± 0.055) of D. confervacea. The highest mean observed of duration time of DI was in C. calcitrans ($36 \pm 20.08 \mathrm{~h}$), followed by S. costatum ($32 \pm 12.39 \mathrm{~h}$) and the lowest was in D. confervacea ($24 \pm 0.00 \mathrm{~h}$). The highest mean observed of duration time in all treatments was in treatment number one ($72 \pm 0.00 \mathrm{~h}$) of C. calcitrans followed by treatment number two (480.00 h) of C. calcitrans and treatment number one (480.00 h) and two (480.00 h) of S. costatum, as shown in Figure (71).

Figure 64: The effect of high temperature $\left(27-34^{\circ} \mathrm{C}\right)$ on growth rate of three isolated diatoms S. costatum, D. confervacea and C. calcitrans were cultured at outdoor mass

Figure 65: Development index (DI) of Penaeus japonicus larvae, stage of (Z1: Z2) fed with one to six concentrations

Figure 66: Survival rate (SR \%) of Penaeus japonicus larvae, stage of (Z1: Z2) fed with one to six concentrations

Figure 67: Total length (mm) of Penaeus japonicus larvae, stage of (Z1: Z2) fed with one to six concentrations

Figure 68: Development index (DI) of Penaeus japonicus larvae, stage of $(\mathrm{Z} 2: \mathrm{Z} 3)$ fed with six concentrations

Figure 69: Survival rate (SR \%) of Penaeus japonicus larvae, stage (Z2: Z3) fed with one to six concentrations

Figure 70: Total length (mm) of Penaeus japonicus larvae, stage of $(\mathrm{Z} 2 \mathrm{Z} 3)$ fed with one to six concentrations

Survival rate (SR)

The highest mean of SR observed was in D. confervacea ($77.60 \pm 6.44 \%$) followed by S. costatum ($70.97 \pm 7.26 \%$) and the lowest was in C. calcitrans ($65.58 \pm 14.00 \%$). The highest SR observed was in treatment number five ($83.95 \pm 1.05 \%$) of D. confervacea and the lowest was in treatment number one ($41.66 \pm 2.23 \%$) of C. calcitrans, as shown in Figure (72).

Total length (TL)

The highest mean of TL observed was in S. costatum ($3.77 \pm 0.23 \mathrm{~mm}$) followed by C. calcitrans ($3.48 \pm 0.17 \mathrm{~mm}$) and the lowest was in D. confervacea $(3.44 \pm 0.27 \mathrm{~mm})$. The highest TL observed was in treatments number four ($3.97 \pm 0.030 \mathrm{~mm}$) of S. costatum and the lowest was in treatment number one ($3.11 \pm 0.140 \mathrm{~mm}$) of D. confervacea, as shown in Figure (73).

STAGE M1:M2

Development index (DI)

The highest mean observed of DI was in D. confervacea (4.45 ± 0.23), followed by C. calcitrans (4.37 ± 0.12) and the lowest was in S. costatum (4.21 ± 0.25). The highest DI observed was in treatments number two (4.73 ± 0.240) of D. confervacea and the lowest DI observed was in treatment number six (4.05 ± 0.230) of S. costatum. The highest mean observed of duration time for DI was in C. calcitrans $(32 \pm 12.39 \mathrm{~h})$. The highest mean observed of duration time for DI in all treatments was in treatment number
one ($48 \pm 0.00 \mathrm{~h}$) and two ($48 \pm 0.00 \mathrm{~h}$) of C. calcitrans, as shown in Figure (74).

Survival rate (SR)

The highest mean of SR observed was in D. confervacea ($67.65 \pm 8.94 \%$) followed by C. calcitrans ($60.02 \pm 23.77 \%$) and the lowest mean of DI noticed was in S. costatum ($54.14 \pm 15.17 \%$). The highest SR observed was in treatment number three ($78.90 \pm 4.20 \%$) of D. confervacea and the lowest was in treatment number one ($13.62 \pm 1.21 \%$) of C. calcitrans, as shown in Figure (75).

Total length (TL)

The highest mean observed of TL was in D. confervacea ($4.41 \pm 0.28 \mathrm{~mm}$) followed by S. costatum ($4.23 \pm 0.18 \mathrm{~mm}$) and the lowest was in C. calcitrans $(4.12 \pm 0.05 \mathrm{~mm})$. The highest TL observed was in treatment number six $(4.78 \pm 0.001 \mathrm{~mm})$ of D. confervacea and the lowest was in treatments number six ($4.02 \pm 0.040 \mathrm{~mm}$) of C. calcitrans, as shown in Figure (76).

Figure 71: Development index (DI) of Penaeus japonicus larvae, stage of (Z3 : M1) fed with six concentrations

Figure 72: Survival rate (SR \%) of Penaeus japonicus larvae, stage of (Z3:M1) fed with one to six concentrations

Figure 73: Total length (mm) of Penaeus japonicus larvae, stage of (Z3:M1) fed with one to six concentrations

Figure 74: Development index (DI) of Penaeus japonicus larvae, stage of (M1:M2) fed with six concentrations

Figure75: Survival rate (SR \%) of Penaeus japonicus larvae, stage of (M1:M2) fed with one to six concentrations

Figure 76: Total length (mm) of Penaeus japonicus larvae, stage of (M1:M2) fed with one to six concentrations

STAGE M2:M3

Development index (DI)

The highest mean observed of DI was in S. costatum (5.60 ± 0.13) followed by D. confervacea (5.56 ± 0.20) and the lowest was in C. calcitrans (5.35 ± 0.10). The highest DI observed was in treatments number five (5.89 ± 0.080) of D. confervacea and the lowest was in treatment number one (5.25 ± 0.750) of C. calcitrans as shown in figure (80). The duration time for DI were equals ($24 \pm 0.00 \mathrm{~h}$) in all species and treatments, as shown in Figure (77).

Survival rate (SR)

The highest mean of SR observed was in D. confervacea ($62.18 \pm 10.36 \%$) followed by C. calcitrans
$(59.42 \pm 14.39 \%)$ and the lowest was in S. costatum $(51.32 \pm 16.35 \%)$. The highest SR observed was in treatment number four ($76.51 \pm 2.11 \%$) of C. calcitrans and the lowest was in treatment number six (21.17 $\pm 3.88 \%$) of S. costatum, as shown in Figure (78).

Total length (TL)

The highest mean of TL observed was in C. calcitrans $(4.69 \pm 0.43 \mathrm{~mm})$, followed by S. costatum (4.65 ± 0.39 mm) and the lowest was in D. confervacea $(4.47 \pm 0.39$ mm). The highest TL observed was in treatments number six ($5.23 \pm 0.020 \mathrm{~mm}$) of C. calcitrans and the lowest was in treatments number six $(4.13 \pm 0.088 \mathrm{~mm})$ of D. confervacea, as shown in Figure (79).

Figure 77: Development index (DI) of Penaeus japonicus larvae, stage of (M2:M3) fed with one to six concentrations

Figure 78: Survival rate (SR \%) of Penaeus japonicus larvae, stage of (M2:M3) fed with one to six concentrations

Figure 79: Total length (mm) of Penaeus japonicus larvae, stage of (M2:M3) fed with one to six concentrations

STAGE M3: PL1

Development index (DI):

The highest mean observed of DI was in S. costatum (6.30 ± 0.17) followed by D. confervacea (6.18 ± 0.15) and the lowest mean of DI noticed was in C. calcitrans (6.15 ± 0.11). The highest DI observed was in treatment number five (6.53 ± 0.40) of S. costatum and the lowest was in treatment number one (6.03 ± 0.06) of C. calcitrans. The duration time for DI were equals ($24 \pm 0.00 \mathrm{~h}$) in all species and treatments, as shown in Figure (80).

Survival rate (SR):

The highest mean observed of SR was in D. confervacea ($57.61 \pm 11.8 \%$) followed by C. calcitrans
$(53.16 \pm 21.62 \%)$ and the lowest was in S. costatum $(41.12 \pm 18.98 \%)$. The highest SR observed was in treatment number four ($75.53 \pm 2.13 \%$) of C. calcitrans and the lowest was in
treatment number one ($14.58 \pm 1.40 \%$) of C. calcitrans, as shown in Figure (81).

Total length (TL)

The highest mean of TL observed was in S. costatum ($5.38 \pm 0.20 \mathrm{~mm}$), followed by D. confervacea ($5.09 \pm 0.17 \mathrm{~mm}$) and the lowest was in C. calcitrans ($5.02 \pm 0.28 \mathrm{~mm}$). The highest TL observed was in treatment number three $(5.47 \pm 0.010 \mathrm{~mm})$ of S. costatum and the lowest was in treatment number one ($4.71 \pm 0.020 \mathrm{~mm}$) of C. calcitrans, as shown in Figure (82).

Figure 80: Development index (DI) of Penaeus japonicus Figure 81: Survival rate (SR \%) of Penaeus larvae, stage of (M3:PL1) fed with one japonicus larvae, stage of (M3:PL1) fed with one to to six concentrations
six concentrations

Figure 82: Total length (mm) of Penaeus japonicus larvae, stage of (M3:PL1) fed with one to six concentrations

4. Discussion

Three diatom species were isolated from the Eastern Harbor of Alexandria, Egypt. All isolated species were within size range suitable for ingestion by filter feeders (Webb \& Chu 1983). There cell dimension (excluding spines and chains) ranged from $2-3 \mu \mathrm{~m}$ (C. calcitrans), $2-5 \mu \mathrm{~m}$ (S. costatum) or 6-15 $\mu \mathrm{m}$ (D. converfacea). S. costatum was predominantly a chain form had been comprised of about 5-20 cells, thin walls and usually straight. C. calcitrans was predominantly a single cell, thin walls, cells thin, cell extremely small and had straight seta.
D. confervacea sometimes had a single cell or a chain, chains comprised of about 2-5 cells, cells are long, thin chains, thin walls, forming bundles and inconspicuous intercalary bonds and had a large number of resting spores was observed by Durbin (2004)

The results of the present study showed that the optimum growth rate of C. calcitrans was at temperature $20^{\circ} \mathrm{C}$, salinity 30 ppt and illumination of 750 Lux/ 24 h . From the modification of silicate and vitamin amount of $\mathrm{F} / 2$ standard medium, the results suggested that the highest growth rate was achieved with F/2 3-fold of silicate and 2-fold of vitamin content rather than other treatments. Kongkeo (1991) found that C. calcitrans grow well at temperature optimum temperature of $28^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$, optimum salinity $22-28 \mathrm{ppt}$ with an optimum light intensity >10.000 Lux/ 24 h . Hen (1991), Hirayama et al'(1991) and Okauchi (1991) cited that the optimal growth of Chaetoceros $s p$. was achieved at temperature $25-35^{\circ} \mathrm{C}$, salinity $20-35 \mathrm{ppt}$ and illumination of $8000-10,000 \mathrm{Lux} / 24 \mathrm{~h}$

In this study; the optimum growth rate observed for S. costatum was at temperature $20^{\circ} \mathrm{C}$, salinity 35 ppt and illumination of $750 \mathrm{Lux} / 24 \mathrm{~h}$. From the modification of silicate and vitamin content of $F / 2$ standard medium, the results suggested that the highest growth rate was achieved with $\mathrm{F} / 2$ standard silicate and vitamin content rather than other treatments. Uddin and Zafar (2006) found that S. costatum grow well at temperature ranging from $3^{\circ} \mathrm{C}$ to $34^{\circ} \mathrm{C}$ with an optimum temperature of $25^{\circ} \mathrm{C}-27^{\circ} \mathrm{C}$, salinity $15-34$ ppt with an optimum ranging from 25 to 29 ppt and with an optimum light intensity ranging from 500 to $10.000 \mathrm{Lux} / 24 \mathrm{~h}$ and declines at intensities exceeding 10.000 Lux (Liao\& Huang, 1973). Kongkeo (1991) found that S. costatum grow well at temperature optimum temperature of $26^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$, optimum salinity $27-30 \mathrm{ppt}$.

There are no information about indoor and outdoor growth conditions of D. confervacea. The results of this study showed that the optimum growth rate observed of D. confervacea was at temperature $20^{\circ} \mathrm{C}$, salinity 35 ppt and illumination of $750 \mathrm{Lux} / 24 \mathrm{~h}$. From the results obtained of the modification of silicate and vitamin content of $\mathrm{F} / 2$ standard medium, the results showed that the highest growth rate was achieved with standard F/2 . Mass culture experiments in outdoor
tanks for the three isolated species were conducted in summer season at high temperature $\left(27-34^{\circ} \mathrm{C}\right)$.
D. converfacea showed the highest growth rate and the longest culture period compared with S. costatum and C. calcitrans.

The method used for outdoor mass culture of S. costatum is similar to that for C. calcitrans, except that S. costatum incubation period is short (Kongkeo 1991). Temperature can be important in determining which species will predominate in open outdoor culture at local conditions (Goldman and Ryther 1977, Goldman 1979, Goldman and Mann 1980, De Pauw et al. 1980 and Witt et al. 1981).

Chaetoceros calcitrans is a small species which reproduces at relatively low temperatures ($10-20^{\circ} \mathrm{C}$) (Okarche 1991). Baynes et al. (1979) cited that the Chaetoceros cannot be mass cultured easily in outdoor vessels for the following reasons: they require various vitamins and a stable temperature. According to Aekman et al. (1968), Chaetoceros is high in HUFAs and its overall nutritional value is also high. However, because of their population growth is not always constant (e. g. their lag phases are sometimes too long and their stationary phases are some times too short), their consistent mass culture in outdoor tanks is difficult.

According to Liao et al. (1991) in culture, the diameter of S. costatum decreases after cell division, thus, the S. costatum chains become thinner and thinner. As the diameter becomes smaller, the cell division rate increases, while the concentrated biomass and the duration of the exponential period decrease. A major problem in S. costatum culture is the short exponential growth phase and its tendency to perish after only short culture period.

The present study was conducted to evaluate the three isolated diatom species (with different cell densities) as feed for marine shrimp larvae Penaeus japonicus from the first protozoa stage to the first postlarvae stage.

The results of this study showed that shrimp larvae fed on D. converfacea showed in an equal survival, development and metamorphosis when compared with either S. costatum or C. calcitrans that are being used in most shrimp hatcheries (Samarasinghe et al., 1993)

These results suggest that D. converfacea (which could be mass cultured at high temperature) can be used as feed for marine shrimp larvae Penaeus japonicus.

5. Conclusion

The overall conclusions drawn from the present experimentation are summarized as follows:

1. All isolated diatom species have a cell size suitable for ingestion by zoea and mysis stages of penaeid shrimp larvae Penaeus japonicus.
2. Optimum growth rate observed of S. costatum was at temperature $20^{\circ} \mathrm{C}$,salinity 35 ppt and illumination of 750 Lux/ 24 h , using F/2 standard medium.
3. Optimum growth rate observed for C. calcitrans was at temperature $20^{\circ} \mathrm{C}$, salinity 30 ppt and illumination of 750 Lux/ 24 h , using $\mathrm{F} / 2$ nutrient medium with modification of $\mathrm{F} / 2$ silicate amount (3-fold) and F/2 vitamin amount (2-fold)
4. Optimum growth rate observed for D. confervacea was at temperature $20^{\circ} \mathrm{C}$, salinity 35 ppt and illumination of 750 Lux/ 24 h , using F/2 standard medium.
5. In outdoor mass culture; D. converfacea showed the highest growth rate and the highest culture period "especially at high temperature $\left(27-34^{\circ} \mathrm{C}\right)$ " that when compared with S.costatum and C. calcitrans.
6. D. converfacea resulted in an equal survival, development and metamorphosis of penaeid shrimp larvae Penaeus japonicus when compared with either S. costatum or C. calcitrans that are being used in most shrimp hatcheries

References

Allen. E.J. and Nelson, E.W.: 1952, On the artificial culture of marine plankton organisms. Jour. Mar. Biol. Assoc., N. S., 8 (No 5)
Ackman, R.G.; Tocher, C.S. and McLachlan, J.: 1968, Marine phytoplankter fatty acid. J. Fish. Res. Bd. Canada, 25, 1603-1620.
Aguirre-Hinojosa, E.; Lopez-Torres, M.A. and GrazaAguirre, M.C.: 1999, Culttivo Larvario de camarones peneidos. In: Martinez Cordova, L. R. (ED.) Culttivo Larvario de camarones peneidos. AGT Editor, Mexico, D.F., pp. 67-104.
Anonymous: 1991, The design and operation of live feeds production systems. In: Rotifer and microalgae culture systems, Fulks, W. and Main K.L. (Eds.). Proceedings of a US-Asia Workshop, Honolulu, Hawaii, January 28-31, 1991. The Oceanic Institute, Hawaii, USA, pp 3-52

Hudinaga, M.: 1942, Reproduction, development and rearing of Penaeus japonicus Bate. Jap. J. Zool., Vol.(10):305-392
Kuban, F.D.; Lawrence, A.L. and Wilkenfeld, Wilkenfeld, J.S.: 1985, Survival, metamorphosis and growth of larvae from four penaeid species fed six food combinations. Aquaculture, 47, 151-162.
Liao, I.; Su, H.-S. and Lin, J.-H.: 1993, Larval foods for penaeid prawns. In: CRC Handbook of mariculture. Vol. 1 Crustacean Aquaculture, 2nd Edition. McVey J.P. (Ed.). CRC Press, Inc., Boca Raton, Florida, USA, pp 29-59.
López Elías, J.A.; Voltolina, D.; Chavira Ortega, C.O.; Rodríguez Rodríguez, B.B.; Sáenz Gaxiola, L.M.; Cordero Esquiveland, Cordero Esquiveland, B. and Nieves, M.: 2003, Mass production of microalgae in six commercial shrimp hatcheries of the Mexican

Baynes, S.M.; Emerson, L. and Scott, A.P.: 1979, Production of algae for use in the rearing of larval fish. Fisheries Research Technical Report. 53:13-18
Beiras, R.; Perez-Camacho, A. and Albentosa, M.: 1994, Comparison of the scope for growth with growth performance of Venerupis pullastre seed reared at different food concentration in an open flow system. Aquaculture 116, 353-365.
Cook, H.L. and Linder, M.J.: 1970, Synopsis of biological date on the brown shrimp Penaeus aztecus aztecus. Ives c 1891. FAO Fisheries Reports 57, 1471-1497.
De Pauw, N.H.,; Verlet and L. De Leenheer, Jr.: 1980, Heated and unheated outdoor culture of marine algae with animal manure. In: G. Shelf and C. J. Soeder (Eds.). Algae Biomass. Elsevier/ North Holland Biomedical Press, New York. Pp. 315-341
DROOP, M.I.: 1954, Cobalamin requirement in Chrysophyceac. Nature, Lond., 174: 520.
Emmerson, W.D.: 1980, Ingestion, growth and development of Penaeus indicus larvae4 as a function of Thalassiosirra weissflogii cell concentration. Mar. Biol.58, 65-73.
FAO, 1996: Manual on the Production and Use of Live Food for Aquaculture, Edited by Patrick Lavens and Patrick Sorgeloos, Laboratory of Aquaculture and Artemia Reference Center, University of Ghent, Ghent, Belgium .
Goldman, J.C. and Ryther, J.H.: 1977, Mass production of algae: bioengineering aspect. In: A. Mitsui, S. Miyachi, A. San Pietro and S. Tarnura (Eds.). Biological Solar Energy Conversion Academic Press, New York. Pp 367-378
Goldman, J.C.: 1979, Outdoor algal mass culture-I, applications. Water Res. 13: 1-19.
Goldman, J.C. and Mann: 1980, Temperature influence variation in speciation and chemical composition of marine phytoplankton in outdoor culture. J. Exp. Mar. Biol. Ecol. 46:29-39
Hirayama, Y.; Tarucha, S.; Saku, T. and Horikoshi, Y.: 1991, Hall Effect in macroscopic ballistic fourterminal square structures. Phys. Rev. B 44, 3440 3443
(1991)
northwest. Aquacultural Engineering Volume 29, Issues 3-4, December 2003, Pages 155-164
New, M.B.: 1979, The diet of prawn. Lecture note on the second Aquaculture course. NIFI, Bangkhen, Thailand
Okashi M., Masaharu Tokuda: 1991, Trophic value of the unicellular diatom Phaeodactylum tricornutum for larvae of Kuruma prawn, Penaeus japonicus. National research institute of Aquaculture Fisheries Research Agency. Nansei-cho, Watari-gun, Mie. 516-0193, Japan.
Parvin, M.; Zannat, M.N. and Habib, M.A.B.: 2007, Two Important Techniques for Isolation of microalgae. Asian Fisheries Science (2007) 20117124
Payer, H.D.; Chiemvichak, Y.; Hosakul, Hosakul, K.; Kongpanichkul, Kongpanichkul, C.; Kraidej, L.;

Nguitragul, Nguitragul, M.; Reungmanipytoon, S. and Buri, P.: 1980, Temperature as an important climatic factor during mass production of microscopic algae. In: G. Shelf and C. J. Soeder (Eds.). Algae Biomass. Elsevier/ North Holland Biomedical Press, New York. Pp. 389-399.
Rao, P.V.: 1983, Review of the studies on larval nutrition in cultivation penaeid and palaemonid prawns p. 69-95. In P. V. Rao (ed.) Proc. Symp. Shrimp seed production and hatchery management, 21-22 November 1983, Maine Products Export Development Authority, Cochin, India.
Samarasinghe, R.P.; De Silva, O.S.S. and Fernando, D.Y.: 1993, The culture of Biddulphia longicuris and Its Use as a Feed for Penaeus mondon larvae. Asian Fisheries Science 6 (1993):223-227.
Sunaz, F.P.: 1980, Growth and survival of P. Monodon zoea on different diatom feeds. SEAFDEC 3 QRR III (3):7-11
Tseng W.Y.: 1987, Shrimp mariculture. Apractical manual. Cheng Pubilsher, Taiwan

Villegas C.T. and Kanazawa, A.: 1979, Relationship between diet composition and growth of zoea and mysis stages of Penaeus japonicus (Bate). Fish. Res. J. Philip. 4, 32-40

Wendy and Kevan: 1991, Rotifer and Microalgae culture systems. Honolulu, Hawaii, January 28-31, 1991
Wilkenfeld, J.S.; Lawrence, A.L. and Kuban, F.D.: 1984, Survival, metamorphosis, and growth of penaeid shrimp larvae reared on a variety of algal and animal foods. Journal of the World Mariculture Society, 15:31-49.
Witt, U.; Koske, P.H.; Kuhlmann, D.; Lenz, J. and Nellen, W.: 1981, Production of Nanoochlorosis species (chlorophyceae) in large scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture, 23: 171-181
Yang W.T.: 1975, A manual for large tank culture of Penaeid shrimp to the post larval stage. University of Miami Sea Grant, Coral Gables, Florida. 94pp.

الظروف المثلى للنمو لثلاتة أنواع من الطحالب الدياتوميه (المعزوله: سكلاتونيما كوستاتم،

 كيتوسسيرس كلاسترانس و ديتيونيولا كونفيرفاسيلا، واستخدامهم كغذاء ليرقات الجمبرى> البحرى

سليمان حامد عبد الرحمن*، فاطمه على عبد الرانق *، عادل ابو زيد** ،محمد عاشور * *المعه القومى لعلوم البحار والمصايد، **كلية الزراعة - جامعة طنطا

* ${ }^{\star}$ microalgae_egypt@yahoo.com

تقوم الطحالب الدقيقة بدور حيوى جدا فى تغذيـة يرقات الأسـمالك البحريـة و الجمبري في المفرخـات. فى هذة الدر اسة، تم عزل ثلاثــة انواع من الدياتومات البحريـة من المينـاء الشرقى ،الاسكندرية، مصر ، و هذة الانـواع هـى: سـكلاتونيبا كوستاتم (2-5ميكرون)، كيتوسـبرس كلاسـتر/نس (2-3 ميكـرون) و دبتونيـول كونفيرفاسبا (6-15 ميكرون) تم استخدام المبكروسكوب الالكترونـى للمساعدة فى عمليـة التعريف بـالانواع المعزوله.

تم اختبار الظروف المثلى للنمولكل منهم على النطاق المعلى والإنتاجي، حيث تم دراسة تأثنير المستويات المختلفه من (درجة الحرارة، الملوحة، شدة الإضـاءة، فترة الإضـاءة، السليكات، الفيتامينات) على معدل النمو للثلاثة أنواع. درجة الملوحة المثلى والتى حققت أعلى معدل نمو كانت 35 ، 30 ، 35 جزء/ الف لكل من: سكالتونيما كوستاتم ،كيتوسبيرس كلاستر/نس، دبتونبيول كونفبرفاسيا على التوالى. . درجة الحرارة المتلىى و التى حققت أعلى معدل نمو كانت 20، 25، 20 درجـة مؤيـة لكل مـن : سكالتونيبا كوستاتم ، كيتوسبرس
 لوكس/24 سـاعة لكل الأنواع. كيتوسـبرس كلاستر/نس حقق أعلى معدل نمو عند تعديل المغذيات بمعدل ضعف كمية الفيتامينات وثلاثة أضعاف كمية السليكات. التجربة المزر عيد كانت فى فصل الصيف عند درجـة حرارة مرتفعة(27-34 درجة مئويه)و وأظهرت هذة التجربة أن /لديتانيول كونفبرفاسيا أظهرت أعلى معدل نمو عند مقارنتها بالأنواع الباقيه.
أجريت تجارب لتقييم الأنواع الثالاثة المعزوله كغذاء ليرقات الجمبرى البحرى بينبس جابونبكس بدايـة مـن مرحلة البروتوزؤيا الى اليوم الاول لمرحلة ما بعد الطور اليرقىى. أظهرت نتـائج هذة التجربـة أن الديتانبولغ كونفيرفاسيا عند مقارنتـه بـالأنواع الثـائعه و المستخدمه فى تغذيـة الجمبرى البحرى (سكلاتونيما كوستاتـم ، كيتوسبيرس كلاستر/نس) أعطى نتائج مرضية على كل من معدل الإعانــة ، النمو، النطور ليرقات. مـن هذة

النتائج نستنتج أن ديتانيول كونفبيفاسيا يمكن إستخدامها كغذاء لبرقات الجمبرى البحرى بينببس جابونيكس وخصوصا فى فصل الصيف عند إرتفاع درجات الحرارة.

كلمـات مفتاحيـة : الطحالب الاقيقـة، يرقـات الجمبرى البحرى، بينبس جابونبكس، سككلتونبيا كوستاتم، كيتوسبرس كلاستر/نس، ديتونبيول كونفيرفاسيا

