# a STUDY ON THE TRASH FISH OBTAINED BY THE EGYPTIAN MEDITERRANEAN TRAWLERS. 

## By

S. I. RIZKALLA*<br>*National Institute of Oceanography and Fisheries, Alexandria, Egypt. Composition.

## ABSTRACT

The analysis of the commercial catch of the Egyptian Mediterranean trawlers obtained by 132 trawling trips during the period from December 1993 to November 1994 showed that it was formed of two main categories: valuable species (economic species) and non valuable species (trash fish). The latter was divided into: juveniles of economic, sorted non economic and unsorted non economic species. The average catch per trip of trash fish through the period of investigation was 331 kg representing $26.57 \%$ of the total commercial catch. Juveniles of the economic species constituted about $90.03 \%$ of the total trash catch. Species composition of the trash fish revealed the presence of 36 economic species belonging to 18 families and 26 non economic belonging to 24 families. Picarels (Spicara flexuosa and Spicara smaris) were the most abundant species of trash fish constituting $71.31 \%$ of the total catch. This was followed by gurnards: Trigla lucerna \& Trigloporous lastoviza (7.30\%); groupers: Serranus cabrilla \& Serranus hepatus (7.27\%) and sea breams: Pagellus erythrinus \& Pagellus acarne ( $2.42 \%$ ). The present study indicates that the majority of the economic species in the trash fish were too small in size and were captured before reaching their first sexual maturity. This could be attributed to the use of trawl nets having cod ends with small mesh sizes that retained most of species with small sizes.

## INTRODUCTION

The commercial catch of the Egyptian Mediterranean trawlers is usually composed of two main categories: species of high marketing values (economic species) and species of low marketing values (trash fish). Data concerning the composition of trash fish catch in Egypt is still lacking.

The present work is directed to study in details the landing statistics, species and size composition of trash fish obtained by trawlers aiming to manage the fisheries of the important economic species in the Egyptian Mediterranean waters.

## MATERIAL AND METHODS

The catch of 132 fishing trips carried out by the Egyptian Mediterranean trawlers during the period from December 1993 to November 1994 was analyzed by recording the total number of fish boxes containing both economic species and trash fish. Fish boxes containing trash fish have been divided into three types: the first have juveniles of economic species, the second of sorted non economic species and the third of unsorted non economic species. Random samples were monthly taken from each category of trash fish for species composition and size distribution analysis. Identification of various species constituting the trash fish was carried out in the laboratory. Fish were measured to the nearest millimeter from the tip of snout to the end of caudal fin and weighed to the nearest gram.

## RESULTS

## 1- Abundance of trash fish in the commercial catch :

It is well known that the catch per unit effort would serve as an index of abundance of any species (Ricker, 1975). In the present study the catch per trip is calculated from the recorded statistical data (total catch and number of trawling trips). Table (1) shows the monthly variations in the abundance of trash fish and economic species through 132 trawling operations carried out in the Egyptian Mediterranean waters. It was found that the abundance of trash fish reached minimum value in October ( $14.52 \%$ ) then gradually increased

Table (1): Monthly variations in the abundance of trash fish and economic species obtained by 132 trawling trips in the Egyptian Mediterranean waters during the period from December 1993 to November 1994.

| Month | Number <br> of trawling <br> trips | Trawling catch |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Abundance of economic species |  | Abundance of trash fish |  |
|  |  | Average catch/trip $(\mathrm{kg})$ | \% | Average catch/trip (kg) | \% |
| December, 1993 | 10 | 383 | 73.80 | 136 | 26.20 |
| January, 1994 | 15 | 724 | 75.49 | 235 | 24.51 |
| February | 9 | 609 | 70.81 | 251 | 29.19 |
| March | 10 | 1096 | 55.19 | 890 | 44.81 |
| April | 6 | 1015 | 60.60 | 660 | 39.40 |
| May | 8 | 1062 | 66.38 | 538 | 33.62 |
| June | 14 | 864 | 71.17 | 350 | 28.83 |
| July | 10 | 1215 | 80.20 | 300 | 19.80 |
| August | 15 | 1141 | 78.15 | 319 | 21.85 |
| September | 11 | 1318 | 82.38 | 282 | 17.62 |
| October | 9 | 1254 | 85.48 | 213 | 14.52 |
| November | 15 | 524 | 82.13 | 114 | 17.87 |
| Total | 132 | 915 | 73.43 | 331 | 26.57 |

during the next months reaching its maximum value in March (44.81\%). Generally the average catch per trip for trash fish throughout the period of investigation was 331.0 kg representing $26.57 \%$ of the total commercial catch. From Table (2), it is clear that juveniles of economic species dominated the catch of trash fish in all months ranging from $82.46 \%$ in November to $97.87 \%$ in September with lowest value in January $47.66 \%$.

## 2- Species composition of trash fish :

Monthly species composition of trash fish is given in Table (3). From the table, it can be found that:

Picarels (Spicara flexuosa \& Spicara smaris) dominated the catch of trash fish forming $71.31 \%$ of the total production. Their highest production were obtained during three successive months February (84.96\%), March (93.92\%) and April (85.86\%).

Juveniles of gurnards (Trigla lucerna and Trigloporus lastoviza) came next in importance constituting $7.30 \%$ of the total trash catch. Their maximum production was observed during October (29.17\%) and January (27.19\%).

Juveniles of groupers (Serranus cabrilla and Serranus hepatus) are considered as another important constituent of trash fish. They constituted $7.27 \%$ of the total trash catch and their highest production was found during three successive months April ( $10.10 \%$ ), May (12.09\%) and June (18.77\%).

Juveniles of sea breams (Pagellus erythrinus and Pagellus acarne) took part in the composition of trash fish. Their percentage represented $2.42 \%$ in the catch and their maximum abundance was observed during September ( $10.97 \%$ ), October (6.25\%) and November (7.02\%).

Wide eye flounder (Bothus podas) and stargazers (Uranoscopus scaber) together with cartilagenous fishes are non economic constituting $1.85 \%, 1.82 \%$ and $2.04 \%$ respectively of the total trash catch.

Table (2): Monthly variations in the abundance of juveniles of economic species and non economic species forming the trash fish obtained by 132 trawling trips in the Egyptian Mediterranean waters during the period from December 1993 to November 1994.

| Month | Number of trawling trips | Trash fish |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Juveniles of economic species |  | Non economic species |  |
|  |  | Average catch/trip (kg) | \% | Average catch/trip (kg) | \% |
| December 1993 | 10 | 126 | 92.65 | 10 | 7.35 |
| January 1994 | 15 | 112 | 47.66 | 123 | 52.34 |
| February | 9 | 242 | 96.41 | 9 | 3.59 |
| March | 10 | 865 | 97.18 | 25 | 2.81 |
| April | 6 | 637 | 96.52 | 23 | 3.48 |
| May | 8 | 483 | 89.78 | 55 | 10.22 |
| June | 14 | 304 | 86.86 | 46 | 13.14 |
| July | 10 | 278 | 92.67 | 22 | 7.33 |
| August | 15 | 310 | 97.18 | 9 | 2.82 |
| September | 11 | 276 | 97.87 | 6 | 2.13 |
| October | 9 | 195 | 91.55 | 18 | 8.45 |
| November | 15 | 94 | 82.46 | 20 | 17.54 |
| Total | 132 | 298 | 90.03 | 33 | 9.97 |

## RIZKALLA, S.I.

Table (3): Monthly species composition of trash fish (a- Juveniles of economic species, b-Sorted and unsorted non economic species) obtained by 132 trawling trips in the Egyptian Mediterranean waters (December 1993 - November 1994).
a- Juveniles of economic species.

| Fish species | Month |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dec. 1993 |  | Jan. 1994 |  | Feld. |  | Mar. |  | Apr. |  | May |  |
|  | kg | \% |
| Spicara sp. | 969 | 71.25 | 248 | 7.04 | 1920 | 84.96 | 8359 | 93.92 | 3400 | 85.86 | 3220 | 74.88 |
| Trigla sp. | 182 | 13.38 | 957 | 27.19 | 60 | 2.65 | 111 | 1.25 | 20 | 0.51 | 60 | 1.39 |
| Serranus sp. | 64 | 4.71 | 273 | 7.76 | 120 | 5.31 | 83 | 0.93 | 400 | 10.10 | 520 | 12.09 |
| Boops boops | 14 | 1.03 | 20 | 0.57 |  |  | 20 | 0.22 |  |  |  |  |
| Pagellus sp. | 35 | 2.57 | 74 | 2.10 | 80 | 3.54 | 49 | 0.55 |  |  |  |  |
| Pagrus pagrus |  |  |  |  |  |  |  |  |  |  | 60 | 1.39 |
| Argyrosomus regius |  |  |  |  |  |  |  |  |  |  |  |  |
| Solea aegyptiaca |  |  | 37 | 1.05 |  |  |  |  |  |  |  |  |
| Mullus sp. |  |  | 30 | 0.85 |  |  |  |  |  |  |  |  |
| Merluccius merluccius |  |  | 33 | 0.94 |  |  |  |  |  |  |  |  |
| Tichiurus lepturus |  |  |  |  |  |  | 24 | 0.27 |  |  |  |  |

(continued).

| Fish species | Month |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | June |  | July |  | Aug. |  | Sep. |  | Oct. |  | Nov. |  | Total |  |
|  | kg | \% |
| Spicara sp. | 2840 | 57.96 | 2080 | 69.33 | 3560 | 74.32 | 2400 | 77.42 | 1040 | 54.17 | 1140 | 66.67 | 31176 | 71.31 |
| Trigla sp. | 290 | 5.92 | 380 | 12.67 | 460 | 9.60 |  |  | 560 | 29.17 | 110 | 6.43 | 3190 | 7.30 |
| Serranus sp. | 920 | 18.77 | 200 | 6.67 | 260 | 5.43 | 280 | 9.03 | 20 | 1.04 | 40 | 2.34 | 3180 | 7.27 |
| Boops boops |  |  |  |  | 140 | 2.92 |  |  |  |  |  |  | 194 | 0.44 |
| Pagellus sp. | 120 | 2.45 |  |  | 120 | 2.51 | 340 | 10.97 | 120 | 6.25 | 120 | 7.02 | 1058 | 2.42 |
| Pugrus pagrus |  |  |  |  |  |  |  |  |  |  |  |  | 60 | 0.14 |
| Argyrosonus regius | 80 | 1.63 | 120 | 4.00 | 20 | 0.42 | 20 | 0.64 | 20 | 1.04 |  |  | 260 | 0.59 |
| Solea aegyptiaca |  |  |  |  |  |  |  |  |  |  |  |  | 37 | 0.08 |
| Mullus sp.: |  |  |  |  | 100 | 2.09 |  |  |  |  |  |  | 130 | 0.30 |
| Merluccius merluccius |  |  |  |  |  |  |  |  |  |  |  |  | 33 | 0.08 |
| Trichiurus lepturus | , |  |  |  |  |  |  |  |  |  |  |  | 24 | 0.05 |

b-Sorted and unsorted non economic species

| Fish species | Month |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dec. 1993 |  | Jan. 1994 |  | Feb. |  | Mar. |  | Apr. |  | May |  |
|  | kg | \% | kg | $\%$ |
| Citharas ingtunta | 17 | 1.25 | 212 | 6.02 |  |  | 55 | 0.62 |  |  |  |  |
| Bathus podas | 29 | 2.13 | 780 | 22.16 |  |  |  |  |  |  |  |  |
| Microchirus ocellatus |  |  | 91 | 2.59 |  |  |  |  |  |  |  |  |
| Conger conger |  |  | 67 | 1.90 |  |  |  |  |  |  |  |  |
| Ariosoma balearicum |  |  | 121 | 3.44 |  |  |  |  |  |  |  |  |
| Echelus myrus |  |  | 54 | 1.53 |  |  |  |  |  |  |  |  |
| Uranoscopus scaber |  |  | 27 | 0.77 |  |  |  |  | 80 | 2.02 | 220 | 5.12 |
| Gobius niger |  |  | 60 | 1.70 |  |  | 161 | 1.81 |  |  |  |  |
| Xyrichtys bimaculatus |  |  | 60 | 1.70 |  |  |  |  |  |  |  |  |
| Stephanolepis hispidus |  |  | 145 | 4.12 |  |  |  |  |  |  |  |  |
| Balistes punctatus |  |  | 77 | 2.19 |  |  |  |  |  |  |  |  |
| Trachinus sp. |  |  | 118 | 3.35 |  |  |  |  |  |  | 20 | 0.47 |
| Carilagenous fishes |  |  |  |  | 80 | 3.54 |  |  | 60 | 1.51 | 200 | 4.63 |
| Unsorted species | 50 | 3.68 | 36 | 1.02 |  |  | 38 | 0.43 |  |  |  |  |

## (Continuted)

| Fish species | Mortih |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | June |  | July |  | Aug. |  | Sep. |  | Oct. |  | Nov. |  | Total |  |
|  | kg | \% | kg | $\%$ | kg | \% |
| Citharus linguatula |  |  |  |  |  |  |  |  |  |  |  |  | 284 | 0.65 |
| Bothas podas. |  |  |  |  |  |  |  |  |  |  |  |  | 809 | 1.85 |
| Microchirus ocellatus |  |  |  |  |  |  |  |  |  |  |  |  | 91 | 0.21 |
| Conger conger |  |  |  |  |  |  |  |  |  |  |  |  | 67 | 0.15 |
| Ariosoma balearicum |  |  |  |  |  |  |  |  |  |  |  |  | 121 | 0.28 |
| Echelus myrus |  |  |  |  |  |  |  |  |  |  |  |  | 54 | 0.12 |
| Uranascopus scaber | 350 | 7.15 | 20 | 0.67 | 40 | 0.83 | 40 | 1.29 |  |  | 20 | 1.16 | 797 | 1.82 |
| Gobius miger |  |  |  |  |  |  |  |  |  |  |  |  | 221 | 0.51 |
| Xyrichtys bimaculatus |  |  |  |  | 20 | 0.42 | 20 | 0.65 |  |  |  |  | 100 | 0.23 |
| Stephanolepis hispidus |  |  |  |  |  |  |  |  |  |  |  |  | 145 | 0.33 |
| Balistes punctatus |  |  |  |  |  |  |  |  |  |  | 120 | 7.02 | 197 | 0.45 |
| Trachinus sp. | 120 | 2.45 | 80 | 2.67 |  |  |  |  |  |  |  |  | 338 | 0.77 |
| Cartilagenous fishes | 160 | 3.26 | 120 | 4.00 | 30 | 0.63 |  |  | 160 | 8.33 | 80 | 4.68 | 890 | 2.04 |
| Unsorted species | 20 | 0.41 |  |  | 40 | 0.83 |  |  |  |  | 80 | 4.68 | 264 | 0.60 |

## 3- Size composition of trash fish species :

From Table (4), it was observed that the majority of economic species were captured with lengths between $7.0-16.0 \mathrm{~cm}$ and about half number of these species were captured at lengths below 11.0 cm . This indicates that juveniles of most economic species were too small for exploitation.

## DISCUSSION

Analysis of the commercial catch obtained by 132 fishing trips by the Egyptian Mediterranean trawlers revealed the presence of trash fish in large quantities representing $26.57 \%$ of the total catch. This high percentage could be attributed to the small mesh size of cod end of the trawl net which retained most of species captured even those of smaller sizes. The present results coincide with that of Shaheen and Al-Sayes (1981) who stated that the average stretched mesh size of the cod end of the Egyptian Mediterranean trawlers not exceeds than 2.5 cm which seems to be very small for best fishery exploitation. Also Charbonnier and Caddy (1986) declared that the mesh size of the cod end of the Egyptian trawlers has no regulation as compared with those given in other areas of the eastern Mediterranean (stretched mesh size in Cyprus 34 mm , Greece 28 mm , Israel 48 mm and Turkey 40 mm ).

Analysis of species composition of trash fish showed the presence of 36 economic species belonging to 18 families and 26 non economic species belonging to 24 families. Juveniles of economic species formed $90.03 \%$ of the total trash catch. Picarels (Spicara flexuosa and Spicara smaris) were found in large quantities forming not less than $71.31 \%$ followed by Trigla lucerna \& Trigloporous lastoviza 7.30\%, Serranus cabrilla \& Serranus hepatus 7.27\% and Pagellus erythrinus \& Pagellus acarne $2.42 \%$. It is worthily to mention that as Hashem (1972) recorded the presence of Spicara smaris in negligible amount in the region between Abu-Kir - Rosetta (Egypt), while the present study declared the presence of picarels in high percentage in the trash catch. This indicates, that the hydrographic conditions of the surrounding fishing ground became more favourable for the life of these species.

The comparison between the mean lengths of most economic species and their lengths at first sexual maturity given by other authors showed that the

Table (4): Size composition of trash fish species (a- Juveniles of economic species and b-non economic species) obtained by 132 trawling trips in the Egyptian Mediterranean waters (Dec. 1993 - Nov.1994).
a- Juveniles of economic species

| Family species | $\%$ <br> Weight | Trash fish length (cm) |  | Body length (cm) * |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Range | Mean | Common | Maximum |
| Family Sparidae |  |  |  |  |  |
| Pagrus pagrus | 1.26 | 4.0-12.0 | 8.52 | 30.0-35.0 | 75.0 |
| Pagellus erythrinus | 6.37 | 5.0-13.0 | 9.49 | 20.0-25.0 | 60.0 |
| Pagellus a carne | 0.15 | 10.0-14.0 | 10.0 | 20.0-25.0 | 36.0 |
| Lithognathus mormyrus | 0.98 | 7.0-15.0 | 9.72 | 25.0 | 55.0 |
| Boops boops | 3.99 | 7.0-16.0 | 10.45 | 15.0-20.0 | 36.0 |
| Diploclus annularis | 1.07 | 8.0-11.0 | 9.6 | 12.0-15.0 | 24.0 |
| Diplodus sargus | 0.14 | 11.0 | 11.0 | 15.0-30.0 | 45.0 |
| Sparus aurata | 0.40 | 12.0-14.0 | 12.8 | 30.0-35.0 | 70.0 |
| Crenidens crenidens | 0.11 | 14.0 | 14.0 | 20.0 | 30.0 |
| Family Haemulidae <br> Parapristipoma mediterraneum | 0.37 | 9.0-17.0 | 12.0 |  |  |
| Family Synodontidae |  |  |  |  |  |
| Synodus saurus | 0.27 | 12.0-19.0 | 14.82 | 15.0-20.0 | 43.0 |
| Saurida undosquamis | 0.03 | 13.3 | 13.3 | 20.0-30.0 | 50.0 |
| Family Trichiuridae |  |  |  |  |  |
| Trichiurus lepturus | 0.88 | 30.0-46.0 | 39.0 |  | 150.0 |
| Family Mullidae |  |  |  |  |  |
| Mulus barbatus | 0.12 | 12.0-14.0 | 12.0 | 10.0-20.0 | 30.0 |
| Mullus surmuletus | 2.23 | 7.0-12.0 | 9.14 | 20.0-25.0 | 40.0 |
| Family Moronidae |  |  |  |  |  |
| Dicentrarchus punctatus | 1.89 | 8.0-14.0 | 10.45 |  | 70.0 |
| Family Siganidae |  |  |  |  |  |
| Siganus rivulatus | 0.92 | 10.0-16.0 | 13.56 | 10.0-20.0 | 40.0 |
| Family Triglidae |  |  |  |  |  |
| Trigla lucerna | 9.91 | 10.0-18.0 | 14.06 | 35.0 | 75.0 |
| Trigloporus lastoviza | 15.33 | 6.0-13.0 | 10.15 |  | 40.0 |
| Family Sciaenidae |  |  |  |  |  |
| Argyrosomus regius | 0.05 | 12.0 | 12.0 | 50.0 | 140.0 |
| Umbrina cirrosa | 0.46 | 8.0-13.0 | 10.21 | 40.0 | 70.0 |

continued
a- Juveniles of economic species (continued)


* Quoted from Whitehead et al. (1986).
continued
b- non economic species

| Family species |  | Trash fish length (cm) |  |
| :---: | :---: | :---: | :---: |
|  |  | Range | Mean |
| Family Gobiidae |  |  |  |
| Gobius niger | 3.18 | 5.0-11.0 | 9.89 |
| Family Citharidae |  |  |  |
| Citharus linguatula | 3.39 | 6.0-18.0 | 12.97 |
| Family Trachinidae |  |  |  |
| Trachinus draco | 2.31 | 13.0-20.0 | 16.31 |
| Trachinus araneus | 0.59 | 15.0-20.0 | 17.0 |
| Family Bothidae |  |  |  |
| Bothes podas | 3.53 | 8.0-17.0 | 12.89 |
| Family Soleidae |  |  |  |
| Microchirus ocellatus | 0.73 | 8.0-13.0 | 10.63 |
| Family Congridae |  |  |  |
| Conger conger | 1.01 | 22.0-39.0 | 30.43 |
| Ariosuma balearicum | 0.22 | 20.0-30.0 | 23.33 |
| Family Ophichthidae |  |  |  |
| Echellıs myrus | 0.22 | 46.0 | 46.0 |
| Family Gadidae |  |  |  |
| Phycis phycis | 0.18 | 19.5 | 19.5 |
| Family Monacanthidae |  |  |  |
| Stephanolips hispidus | 1.82 | 7.0-16.0 | 12.0 |
| Family Balistidae |  |  |  |
| Balistes punctatus | 0.82 | 14.0-16.0 | 15.0 |
| Family Blennidae |  |  |  |
| Parablennius tentacularis | 0.11 | 13.5 | 13.5 |
| Family Caproidae | . |  |  |
| Capros asper | 0.21 | 9.0-10.0 | 9.5 |
| Family Labridae |  |  |  |
| Xyrichtys bimaculatus | 1.86 | 13.0-17.0 | 15.0 |

continued
b- non economic species (continued)

| Family $\quad$ species | Weight | Trash fish length (cm) |  |
| :---: | :---: | :---: | :---: |
|  |  | Range | Mean |
| Family Teraponidae Terapon puta | 0.37 | 8.0-10.0 | 9.53 |
| Family Apogonidae Apogon taeniatus | 0.04 | 8.3 | 8.3 |
| Family Leiognathidae Leiognathus klunzingeri | 0.01 | 3.0-4.0 | 3.5 |
| Family Rajidae Raja radula | 2.03 | 26.0-33.0 | 29.2 |
| Family Exocoetidae Cheilopogon exsiliens | 0.03 | 11.0 | 11.0 |
| Family Uranoscopidae Uranoscopus scaber | 0.75 | 20.0 | 20.0 |
| Family Macrouridae Macrourus berglax | 0.28 | 15.0-23.0 |  |
| Family Ophidiidae Ophidon barbatum | 0.05 | 17.0 | 17.0 |
| Family Lolignidae Loligo sp. | 0.10 | 17.0 | 17.0 |
| Family Sepiidae Sepia sp. | 0.06 | 10.0 | 10.0 |
| Family Squillidae Squilla mantis | 0.41 | 4.0-19.0 | 13.75 |

Table (5) : Comparison between the mean lengths of most important economic species present in the trash fish with their lengths at first sexual maturity.

| Species | Mean <br> length (cm) <br> Present study | Length at first sexual maturity <br> (cm) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female | Combi ned sexes | Author |
| Pagrus pagrus | 8.52 |  |  | 24.0 | Whitehead et al., 1986 |
| Pagellus erythrinus | 9.49 | 14.0 | 13.0 |  | Rizkalla, 1992 |
| Pagellus acarne | 10.0 | 13.0 | 14.0 |  | Rizkalla, 1992 |
| Lithognathus mormyrus | 9.72 |  |  | 14.0 | Whitehead et al., 1986 |
| Boops boops | 10.45 |  |  | 13.0 | Hassan, 1990 |
| Diplodus annularis | 9.6 |  |  | 10.0 | Whitehead et al., 1986 |
| Diplodus sargus | 11.0 |  |  | 17.0 | El-Maghraby et al., 1982 |
| Sparus aurata | 12.8 | 20.0 | 23.0 |  | Wassef, 1978 |
| Synodus saurus | 14.82 | 14.3 | 17.2 |  | Faltas, 1993 |
| Saurida undosquamis | 13.3 | 14.9 | 18.3 |  | Faltas, 1993 |
| Merluccius merluccius | 16.0 | 21.0 | 24.0 |  | Mugahid \& Hashem, 1982 |
| Siganus rivulatus | 13.56 |  |  | 14.8 | Whitehead et al., 1986 |
| Trachurus mediterraneus | 14.13 |  |  | 16.0 | Allam, 1973 |
| Sardinella aurita | 10.28 |  |  | 11.0 | Faltas, 1983 |
| Mullus surmuletus | 9.14 | 11.0- | 13.0- |  | Hashem, 1973 a |
|  |  | 12.0 | 14.0 |  |  |
| Mullus barbatus | 12.0 | 10.0 | 12.0 |  | Hashem, 1973 b |

majority of economic species in the trash catch were captured before attaining their first sexual maturity (Table 5). This phenomenon will certainly affect the production of economic fishes obtained from the Egyptian Mediterranean waters as the percentage of economic species will be gradually decreased due to the continuous loss of new recruits.

From the present study, it is recommended to carry out more investigations on the landed trash catch. Trawl nets with different mesh sizes must be experimented to select the best mesh which minimizes the high catch of juveniles of economic species aiming to give the opportunity for these species to spawn at least one time before capture.

## REFERENCES

Allam, S. M., 1973. Biological studies of fish stocks belonging to genus
Trachurus Rafinesque in the Egyptian Mediterranean waters. M.Sc. Thesis, Facult. Sc. Alex. Univ., 208pp.

Charbonnier, D. and Caddy, J. F., 1986. Report of the technical consultation of the general fisheries council for the Mediterranean on stock assessment in the Eastern Mediterranean. FAO, Rapp. pêches/FAO Fish Rep. (361):146.

El-Maghraby, A. M.; Hashem, M. T.; Botros, G. A. and Wassef, E. A., 1982. Maturation, spawning and fecundity of two sparid fish Diplodus sargus, L. and Diplodus vulgaris, Geoff. in the Egyptian Mediterranean waters. Bull. Inst. Oceanogr. \& Fish., ARE, 8(2):51-67.

Faltas, S. N., 1983. Study of purse-seine fisheries in Egyptian Mediterranean waters with special reference to the biology of sardine in the catch. M.Sc. Thesis, Facult. Sc. Alex. Univ., 194pp.

Faltas, S. N., 1993. Studies on the fishery biology of lizard fish (Family:Synodontidae) in the Egyptian Mediterranean waters. Ph.D. Thesis, Facult. Sc. Alex. Univ., 305 pp.

Hashem, M. T., 1972. Bottom trawling surveys for Abu-Kir-Rosetta region during 1969-1970. Bull. Inst. Oceanogr. \& Fish., 2: 5-22.

Hashem, M. T., 1973 a. Some biological studies on the goat fish (Mullus surmuletus, L.) in the Egyptian Mediterranean waters. Bull. Inst. Oceanogr. \& Fish., 3:95-115.

Hashem, M. T., 1973 b. Some observations of the fishery biology of Red Mullet (Mullus barbatus, L.) in Abu-Kir -Rosetta region during 1969-1970. Bull. Inst. Oceanogr. \& Fish., 3:143-162.

Hassan, M. W. A., 1990. Comparative biological studies between two species of family Sparidae (Boops boops and Boops salpa) in Egyptian Mediterranean waters. M.Sc. Thesis, Facult. Sc. Alex. Univ., 198 pp.

Mugahid, A. R. and Hashem, M. T., 1982. Some aspects of the fishery biology of Hake Merluccius merluccius L. in the Libyan waters. Bull. Inst. Oceanogr. \& Fish., ARE, 8(1):145-162.

Ricker, W. E., 1975. Computation and interpretation of biological statistics for fish populations. Bull. Fish. Res. Bd. Can., (191), 382 pp.

Rizkalla, S. I., 1992. Studies on the fishery biology of sea breams (Genus: Pagellus) in the Egyptian Mediterranean waters. Ph. D. Thesis, Facult. Sc. Zagazig Univ., 235 pp .

Shaheen, A. H. and Al-Sayes, A. A., 1981. Studies of trawl fishing gears in Egypt. Bull. Inst. Oceanogr. \& Fish., ARE, 7(3):549-558.

Wassef, E. A. A., 1978. Biological and physiological studies on marine and acclimatized fish Chrysophyrs auratus (Forster).Ph.D. Thesis, Facult. Sc. Alex. Univ., 218 pp .

Whitehead, P. J. P.; Bauchot, M. L.; Hureau, J. C.; Nielsen, J. and Tortonese, E., 1986. Fishes of the North-Eastern Atlantic and Mediterranean. UNESCO (2): 883-901.

