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ABSTRACT 

The ability of Prorocentrum triestinum to undergo diel vertical 
migration crossing a distinct pycnocline, its relatively higher 
migration ambit as well as growth rate and corresponding doubling 
time represent crocial strategic factors for its massive occurrence. 

Aspects ofthe species reproduction facilitate the lise ofthe phased 
cell division method Cells in different division stages were seen most 
ofthe time. Yet, the main division gate extendedfor about -I-hrs before 
sunrise and there was a lag time ofabout 3--1 hrs behind the formation 
of cells with 2 nuclei and those paired together cells. The phased 
division of P. triestinum 'Occurred predominantly in the migrating 
cells and there was a depth differentiation ofdivided cells. 

The ability of this species to take up nitrate andphosphate in 
darkness has been considered a special adaptation, which might work 
in conjunction with the diel vertical migration to foster its 
development in nature. In situ, > 60 % and 70 % ofnitrate and 
phosphate over the bottom disappeared hetween midnight and early 
morning of the next day, with the descent-partial ascent movement of 



LABIB, ~ & KAMEL, S. 

P. triestinum. In vitro, the dark1ight uptake rates were estimated at 
42-88% nitrate and 33-100% phosphate. 

INTRODUCTION 

The verticel movement of dinoflagellate species is a complex phenomenon. 
Variations in the vertical mrgration patterns (positive or negative phototactic 
behaviour) have been studied by considering external environmental factors 
(Heaney & Eppley 1981, Kamykowski 1981-, Labib & Halim 1995). The range 
of vertical migration of dino-flagellates is frequently variable. Kiefer & Lasker 
(1975), and Heaney & TaIling (1980), found that populations of the same 
species may either undertake appreciable diel vertical migration or fonn 
relatively stable sub-surface maxima. The presence of endogenous or circadian 
rhythms has also been proved (Kohata & Watanabe 1986). 

According to Lehman et al. (1975) the uptake rate of nutrients by 
phytoplankton, which varies from one species to another, is important in 
understanding competition, succession and dominance within natural 
populations of phytoplankton. Among the factors that influence nutrient uptake 
are cell quota (Gotham & Rhee 1981), nitrogen sources and their relative 
concentrations (e.g. Paasche & Kristiansen 1982), temperature (French & 
Smayda 1995) and light (Rivkin & Swift 1982). 

There is some understanding of the dynamics of nitrogen nutrition in a few 
bloom-forming species, such as Ceratium tripos (Conv.1ay & Whitledge, 1979), 
Gonyaulax po{vedra (e.g. Heaney & Eppley, 1981), Gymnodinium splendens 
(e.g Dortch & Maske, 1982), Heterosigma akashiwo, Chattonella antiqua 
(Watanabe et aI., 1983), Amphidinium carlerae, Gymnodinium galatheanum, 
Gyrodinium aureolum, H eterocapsa triquetra, Prorocentrum micans, 
Prorocentrum minimum, Scrippsiella trochoidea (paasche et al., 1984), and 
Heterocapsa niei (Cullen et aI., 1985). Yet, to our knowledge, no such 
information is available neither on nitrogen uptake by the bloom-forming 
dinoflagellate, Prorocentrum triestinum nor on phosphate uptake. 

When only a portion of the cells in a population divides each day, but does 
so in a restricted gate, the population is termed "phased". The mechanisms by 
which this alignment is achieved and maintained and the extent to which it 
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varies among and between various phytoplankton species are critical aspects of 
the adaptive physiology of phytoplankton (Sournia 1974). 

Several hypotheses have been proposed concerning the ecological 
significance of phased cell division; a valuable tool for assessing calculations of 
species-specific gro"Wth rates (see Weiler, 1978), in the context of grazing 
(Chisholm et al., _1978), nutrient uptake capacity, competitive interaction 
among the phytoplanl1:on communities (Chisholm & Nobbs 1976), and species 
composition (Doyle & Poore 1974). However, these hypotheses cannot be 
evaluated until more information on the temporal patterns ofvarious processes 
among a number of taxonomic groups has accumulated. 

In view of the fact that marine dinoflagellates differ widely in their response 
to regulating parameters: swimming behavior, phototaxis, geotaxis and 
circadian rhytm; and the ability to take up nutrients (paasche et al., 1984), 
beside the limited number of species that have been investigated and the 
seemingly contradictory results in some cases, it was of interest to study the in 
situ and in vitro uptake of nitrate and phosphate by P. triestinum, its phased 
growth divisio~ timing and calculated in situ growth rate, in conjunction with 
diel vertical migration during its bloom. Such information could represent an 
attempt to identify some behavioral mechanisms responsible for its repeated 
bloom outbreaks in Alexandria waters (Zaghloul & Halim 1992, Labib 1996). 

MATERIAL AND METHODS 

The present study was carried out at a fixed station (4.5 m depth), in the 
western part of the Eastern Harbour (E.H) of Alexandria during July 1998. 

The E. H is a shallow, semi-enclosed embayment (area 2.5 krn2
, average 

3depth SIll, and volume 15.2 x 106 m ), located in the central part of Alexandria 
City (Fig. 1). During the last 25 years, the harbour received directly municipal 

3wastewater estimated, annually, at 35.2xl06 m . It is also affected, 
intermittently, by additional volume of a raw sewage from the main ~l:Itlet of 

.Alexandria in its western vicinity. '= 

The harbour water turned reddish in color during the period from 2 to 8 July 
1998, indicating the development of a heavy red tide bloom. The dinoflagellate 
Prorocentrum triestinum was the causative organism. 
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On 4-5 July, the diel vertical migration paittem of P. triestinum was 
recorded. Samples were collected at each meter level from the surface to the 
layer over the bottom, during a 20~hrs cycle at 2-5-hrs intervals. The vertical 
profiles included water temperature (using standard thermometer, ± 0.1 °C), 
salinity (salinity refractometer),. dissolved inorganic nitrate, phosphate, 
chlorophyll a (Strickland & Parsons 1972) and ceU concentrations (Utennohl 
1958). Nutrient samples were filtered, frozen and analyzed at a later time. 
Living phytoplankton samples were first examined with a research microscope, 
then preserved and counted. 

The determination of the phased cell divisio~ the timing and calculation of 
the growth rate of P. triestinium were based on both the vertical migration 
samples during the 20-hrs cycle, as well as hourly samples collected between 
02.00h A:M of4 July and 08.DOh A:M on the following morning for all depths. 
The samples were stained following Lewin & Rao (1975). .After this treatment 
nuclei stained bright red were very distinct. Cells with single nucleus (not 
including those of paired together, dividing cells), cells with paired nuclei and 
recently divided pairs of cells were separately counted. The growth rates of 
P. tries'tinum (112) were determined from the maximum daily frequency of 
division and from the increase in cell number following the equations ofWeiler 
& Eppley (1979): 

. #2 = 11tLn (Fmar +l) (1) 

where: F max = maximum (b+c) I (a+b+c) and a = no. of cells with one nucleus 
(not including those of paired-together recently divided cells); b = no. of cells 
with paired nuclei; c = half of the recently divided cells (paired-together cells); 
j12 = specific gromh rate (dai1

) and t = 1 day. 

112 = lit Ln (N]INo); D.T d- l
= Ln2 1112 (2) 

Where N] and No are the cell numbers at t1 and to and D.T is the doubling time 
in days 

A culture experiment was designed to determine the timing ofthe division 
gate, percentage of dividing cells and uptake rates ofnitrate and phosphate. 

P. tries'tinum was isolated from the harbour during September 1998, when 
this species represented an important contributory of a mUlti-species red tide 
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bloom with a maximum density of 1.1 x 106 cell. rI
. The culture was obtained 

by the micropipette washing method, inoculated with 250-300 living cells and 
grown in a capped conical flask (1000 ml). The inoculum was bacteria-free. 
The f/2 medium (Guillard & Ryther 1962) was the basal medium after 
sterilization by autoclaving (120°C, 20 min). The culture maintained 25° C 
under a light intensity of 170~E.m-2.s-1 provided by "white fluorescence", under 
12: 12 LD cycle. After 5 days from inoculation periodical monitoring of cell 
density (3-hrs interval) and chlorophyll a content (Strickland & Parsons 1?72) 
was carried out and the timing and percentage of dividing cells over a 36-hrs 
cycle were estimated. The nitrate and phosphate uptake experiments were 
conducted after 14 days from inoculation when the ambient nitrate and 
phosphate concentrations (Strickland & Parsons 1972) were almost 
undetectable, and when the cell concentration reached about 15 x 103 cell. 1-1 
Twenty 30 ml sub-samples of nitrate and phosphate depleted culture were 
dispensed into 200 ml Erlenmayer flask and diluted with 70 ml ofboth nitrate­
limited and phosphate-limited H medium (Nakamura & Watanabe 1983). 
Changes in ambient nitrate and phosphate were determined every 3-hrs from 
light on through a 27 -hrs cycle. Samples (10 ml) were filtered using Whatman 
GF/C fiber filter and analysed as previously mentioned. The cell counts were 
also determined. All experiments were done in duplicate. 

The nitrate and phosphate uptake rate (v) was calculated following the 
equation of Watanabe et al. (1983): 

v = - ds.(dtrl/N, 

where N is the cell count, and S is nitrate or phosphate concentration. 

RESULTS 

The present study was performed under bloom conditions for P. triestinum 
(93-98.8% of the total population). 

The vertical profiles of P. triestinum cell density, chlorophyll a 
concentrations, and associated physico-chemical parameters during the 20-hrs 
cycle on 4-5 July are shown in Fig. 2. 
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Fig. (2): Vertical profiles of the physico-chemical parameters measured, cblorophyU! 
and the density of Prorocentrum triestinum during a 20-hrs cycle. 
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Physical conditions 
Surface water temperature was around ~O~C and salinity was relatively low 

(36.5-36.8). The surface water was always warmer and less saline than the 
above-bottom layer. Temperature and salinity differences between surface and 
4 m ranged between l-1.6°C ,and 1.6-2, respectively. Subsequently, the water 
column was well density stratified. 

Die/vertical migration 
As evidenced from the vertical distribution of the populalion density of 

P. triestinum there was a clear periodicity, indicating a vertical migration 
pattern. As the bloom was mono specific, chlorophyll a concentrations also 
revealed its diel vertical migration. The species was able to migrate crossing the 
established thermo-haline stratification. The ascent-descent movements did not 
exactly coincide with the .light regime. The species started its massive descent 
after noo~ density between 2.lxl06-2.3xl06 cell. r l in the sub-surface layer (1­
:2 m, l600h). Relatively higher concentrations w~re recorded in the middle layer 
(2-3 m), during the next 5 hrs (1800-2l00h).: This was followed by almost 
homogenous vertical distribution at midnight, with increased numbers over the 
bottom (2 xl06 cell. r 1

). The upward movement started before sunrise. The 
maximum accumulation of P. triestinum was observed at the surface before 
noon, at 10.00b, on 5 July (6.5xl06 cell. r l 

), showing no avoidance of the 
surface layer at times of maximum irradiance. 

Using the depth and time .-. of the maxinlum cell and chlorophyll a 
concentrations, the mean ascent and descent rates were nearly similar (0.55 ­
o60 mh- I 

). 

Nitrate andphosphate uptake kinetics 
In situ observations 

The diel movement of P. triestinum clearly influenced the corresponding 
variability of n: irate and phosphate. Their surface concentrations were lower 
than above the bottom in the after noon - early nighttime. Nitrate and 
phosphate concentrations being 4.5 and 4.7 fold higher at 4 m, at l800h. 
Huwever, the reverse was true from midnight to the following early morning on 
" July. Intermediate concentrations were detected in the mid- water layer with 
the massive downward movement. Their concentrations over the bottom 
decreased drastically, reaching a minimum before dawn. 
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In vitro observations 
The L:D culture experiment lasted for 27-hrs (Fig. 3, Table 1) and showed 

that P. triestinum had the ability to take up nitrate and phosphate both in light 
and dark. Their ambient concentration with time decreased almost linearly. A 
sharp drop coincided with the main time of cell division. The dark/light uJl1ake 

-rates were estimated at 42-88% nitrate and 33-100% phosphate. 

Table (1): In vitro light (L) and dark (D) nitrate (VN) and phosphate (vp)
 
Uptake rates of Prorocentrum triestinum
 

Time (hrs) LorD J' nitrate (VN)
f mol. cell-I. Hr-I 

N phosphate (vp) 

f mol. cell-I. hr-I 

0-3 L 0.33 0.23 
3-6 L 0.29 0.22 
6-9 L 0.16 0.11 

9-12 (0) L 0.30 0.33 
0-3 D 0.29 0.33 
3-6 D 0.27 0.17 
6-9 D·· 0.22 0.17 

9-12 (0) D 0.14 0.11 
0-3 L 0.14 0.08 

Phased cell division 
The L:D culture experiment during 36 hrs (Fig 4A.) indicated a parallel 

relation between the cell density and chlorophyll a content. Cell division could 
be seen to occur in both light and dark periods. However, it was noticeable with 
the light off: extending successfully during the dark period. The maximum 
percentage of cells undergoing division (ca. 14% of the total count) occurred 3­
hrs before the next light phase, indicating that the main division gate was at 
night. 

The percentage to the total and the mean number of cells ofP. triestinum in 
different division stages during 20-hrs cycle is given in Fig 4 B&C. 

The field population showed that cells of P. triestinum in processes of 
division were seen during most of the day and night. However: 
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- despite the broad division time, two distinct periods of noticeable 
division stages were detected~ 'a minor one in the afternoon, with the descent 
migration, to be continued after sunset, and the other, the main gate, extended 
for about 3-4 hrs before sunrise on the following day. 

- cells undergoing division in the first period were observed occupying 
mainly tlfe 2-3 m layer above the pycnocline where the maximum cell 
concentration existed. It was slightly higher at the 1-2 m layer, within the main 
gate before dawn, during the ascent movement. 

- the maximum fraction of cells with 2 nuclei (15.35%), occurred 
consistently at 02.00h, while that of recently divided cells (8.P%), at 06.00h. 

- although cells in different division stages could be seen most of the time, 
and it making hard to estimate exactly the time between the formation of cells 
with 2 nuclei to the formation of paired cells, it seems that there was a lag time 
of about 3-4 hrs. 

- much lower frequency of division was detectable at midday and midnight. 

Based on the analyses of the data collected during the diel vertical migration 
course and the hourly samples, it is concluded that the calculated mean value of 
112 ofP. triestinum was 0.45 d-1

, which corresponds to a D.T of 1.38 days. 

DISCUSSION 

Similar to previous reports on other Prorocentrum spp. (Tangen 1980), 
P. triestinum blooms are characteristically found in semi-closed areas. This 
species has ofter. formed blooms in the E. H from late spring to early autumn 
(Zaghloul & Halim., 1992, Labib 1994 a,b), givin£s abnormally heavy blooms in 

r1April 1993 with a population peak of 71x10 cell. (Labib 1996). The 
discussion of such blooms has included consideration of development and 
maintenance in a well-stratified density water column and low surface nutrients. 
A culture experiment (Labib 1995) stressed the significance of the combination 
of nitrate and phosphate for its growth rates, rather than their individual 
addition. 
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similar to that previously reported for other dinoflagellate species (Eppley 
ai, 1968; Weiller & Karl, 1979; Kamykowski, 1981; Cullen & Horriga 
1981). 

- _ 

The present data show no avoidance of P. triestinum of the surra 
maximum irradiance at noon under nitrate and phosphate limitatioI4 contrary 
Gymnodinium splendens (Cullen & Horrigan 1981) and Gonyaula 
tamarensis (Anderson & Stolzenbach 1985). Alexandrium minutum at 
exhibited similar behavior in Alexandria waters, but with plenty ofnutrien 
(labib & Halim, 1995). Light and ambient nutrients strongly control the vertll 
movement patterns, causing ceasing at times (e.g. Gonyaulax polyedra, Eppl' 
e! aI., 1968; Peridinium quinquecorne, Horstmann 1980; Ceratium fur 
Heaney & Eppley 1981). 

The swimming speed ofP. triestinum was higher than that ofP. mini1lU4 
(0.3 mh- I or less, Tyler & Seliger 1981), but lower than in situ speeds 01 
redfieldi, 1.2 mh-I and P. micans, 2.2 mh- I (Staker & Bruno 1980). On .. 
other hand, Hasle (1954) estimated a velocity speed of 0.44 mh- l for P. mica,.. 
from in situ results. The rates of vertical movement for He!erocapsa triqueri 
and Gonyaulax tamarensis were 0.6-1 mh- I (Anderson & Stolzenbach ]9~ 
similar to the range reported of other dinoflagellates (Hand et al., 1965; Epph 
e! aI., 1968; Heaney & Eppley 1981). 
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phosphate was fast, following their daily injection from land-based sources. 
This result also seems of ecological importance since many dinoflagellates 
cease their vertical movement under steep nitrate reduction as previously 
mentioned. 

The present study shows that the division of P. triestinum occurred 
predominantly- in the dark, and thus the ascent of cells during the day-light 
usually results in more rapiQ increase ill cell ~oncentration in the surface layer 
than could be accounted for the cell divis:on. 

The observed dark/light uptake ratio of nitrate and phosphate (42 - 8g 0/0 

nitrate and 33-100 % phosphate) was compared to that of some other species ~l 

was 41-100 % nitrate and 43-100 % phosphate fer Heterosigma akashiwo and 
49-100 0.1<> nitrate and 75-100 % phosphate for Chattonella antiquQ (Watanabe 
et aI., 1983). According to Hanison (1976) the range 50-100 % of the daily 
requirement of Gonyaulax polyedra could be obtained from dark uptake and 
assimilation. In general, nutrient uptake rate 111 the dark is less than 65 % than 
the light (Rivkin & Swift 1982). 

Phosphate was shown to be taken up fa~ler than nitrate, particularly in dark 
periods in both in situ and in vitro observations. There are seemingly 
contradictory results for some dinoflage!late species (e.g. Prorocentrum 
minimum, Paasche et aI., 1984). The latter authors emphasized the variability 
of dinoflagellate nitrogen nutrition and illustrated the difficulty of associating 
mass occurrence of dinoflagellates in nature with any particular nutritional 
mode. The important role played by pho£phate lirnita~ion fer the growth of P. 
trietinum and others in the neritic watp,rs of Alexandria was discussed by 
Zaghloul & Halim (1992) and Labib (1996), as well as in culture experiment 
(Fukazawa et aI., 1980). It has been claimed to be a controlling growth and 
production factor for phytoplankton in the Mediterranean (Stirn 1988). It is also 
important to notice, even considering variations between different species of the 
same genus, that principally phosphate controlled the growth offroroce,ntrum 

. micans in vitro, followed by nitrate (Mingazzini et aI., 1992). I 

The aspects of reproduction ofP. triestinum facilitate the use of the applied 
phased cell division method beside the long duration time of cell division. This 
method used to offset losses it incurs through predation, water exchange and 
movement of cells out of the sampled column. 
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Whereas division in marine diatoms occurs at varying species-specific times 
through the 24-hrs cycle (see Paasche 1968, Smayda 1975), division in photo­
synthetic marine dinoflagellates, of diverse origin is generally late at night or 
early morning under laboratory conditions (see Weiler 1978), and field (see 
Weiler & Chisholm 1976~ Chisholm 1981). Yet there appear to be at least some 
exceptions and this generalization might not hold title. 

The present data showed the main division gate to extend for about 3-4 hrs 
before sunrise and there was a lag time of about 3-4 hrs behind the formation of 
cells with 2 nuclei to the formation of paired-together cells. Comparing with 
others, the width of the division gate in genus Ceratium ranges from 2-hrs 
(Doyle & Poore 1974), to about 12-hrs (Heller 1977), but are commonly of the 
order of5-7 hrs (Weiler & Eppley 1979). 

Although the division peak occurred before dawn (15.35 %, cells with 2 
nuclei), cells in different division stages were seen most of the day light and 
dark times. This is similar to that reported for 6 Ornithocercus species by 
Weiler & Eppley (1979), but contrary to other species of restricted division 
gates~ Ornithocercus magnificus (maximum 8 ~o), only at 05.00h~ Peridinium 
spp, 03.00~ and Ceratocorys horrida, at 04.00h (Doyle & Poore 1974), and 
Prorocentrum ,means, 07.00h, as well as Ceratium Jurca, 04.00-07.00h 
(Eppley et a1. 1984). The maximum population of Ceratium cells observed 
dividing, which reflects the population growth rate, has been found to range 
from 1 to 40%, but usually between 10-20 % (Elbrachter 1973). 

Other different times were reported for Pyrocystis noctiluca, and P. 
fusiformes (maximal production during the later part of the night, but the gate 
appears to span the entire dark interval, Swift & Durbin 1972), and for the fast­
growing .field population, DinophysisJortii, which was noted to span the entire 
day, with the maximum frequency of paired cells occurring soon after sunrise 
(Weiler & Chisholm 1976). On the other hand, in several dinoflagellate species, 
the division processes span the dark period~ Gymnodinium splendens (Hasting 
& Sweeney 1964), Scrippsiella trochoidea (Nelson & Brand 1979) and 
Amphidinium carteri (Chisholm & Brand 1980). Prorocentrum micans 

, exhibited different division patterns: division at night (Hasle 1954)~ division 
begins in the middle of the light period and is completed by the onset of 
darkness (Hastings & Sweeney 1964); or at 07.00h (Eppley et aI., 1984). 
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phosphate was fast, following their daily injection from land-based sources. 
This result also seems of ecological importance since many dinoflagellates 
cease their vertical movement under steep nitrate reduction as previously 
mentioned. 

The present study shows that the division of P. triestinum occurred 
predominantly- in the dar~ and thus the ascent of cells during the day-light 
usually results in more rapiq increase ill celll."oncentration in the surface layer 
than could be accounted for the cell division. 

The observed dark/light uptake ratio of nitrate and phosphate (42 - 8~ 0/0 

nitrate and 33-100 % phosphate) was compared to that of some other species ~L 

was 41-100 % nitrate and 43-100 % phosphate fer Heterosigma akashiwo and 
49-100 % nitrate and 75-100 % phosphate for Chattonella antiqua (Watanabe 
et ai., 1983). According to Harrison (1976) therange50-100%ofthedaily 
requirement of Gonyaulax polyedra could be obtained from dark uptake and 
assimilation. In general, nutrient uptake rate i~ the dark is less than 65 % than 
the light (Rivkin & Swift 1982). 

Phosphate was shown to be taken up fa~i.er than nitrate, particularly in dark 
periods in both in situ and in vitro observations. There are seemingly 
contradictory results for some dinoflagellate species (e.g. Prorocentrum 
minimum, Paasche et aI., 1984). The latter authors emphasized the variability 
of dinoflagellate nitrogen nutrition and illustrated the difficulty of associating 
mass occurrence of dinoflagellates in nature with any particular nutritional 
mode. The important role played by pho~phate limita:ion fer the growth of P. 
trietinum and others in the neritic watp-rs of Alexandria was discussed by 
Zaghloul & Halim (1992) and Labib (1996), as well as in culture experiment 
(Fukazawa et ai., 1980). It has been claimed to be a controlling growth and 
production factor for phytoplankton in the Mediterranean (Stirn 1988). It is also 
important to notice, even considering vRriations between different species of the 
same genus, that principally phosphate controlled the growth of froroce.ntrum 

. micans in vitro, followed by nitrate (Mingazzini et ai., 1992). 

The aspects of reproduction ofP. triestinum facilitate the use of the applied 
phased cell division method beside the long duration time of cell division. This 
method used to offset losses it incurs through predation, water exchange and 
movement of cells out of the sampled column. 
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The calculated mean growth rate of P. triestinum and its corresponding 
mean doubling time was higher than that ofHetrocapsa triqueter, Gonyaulax 
tamarensis (Watras et aI., 1982), and Ceratium tripos (Eppley et aI., 1984J 
However, it is proved that the gro\vth division rate could vary in relation to 
environmental conditions. There was a 10 fold increase for the latter species at 
light saturation (Malone 1978). Temperature also affected it::. growth 
(maximum 0.3 d- l at 16°C, Eppley et aI., 1984). 

Although both cell division and the patterns of the diel vertical migration cf 
P. .triestinum, were phased separately and individually, they synchronized weB 
with each other. The high proportion of cells undergoing division at 2-3 m 
depth above the pycnocline and the maximum cell concentrations during the 
descent movement, as well as at 1-2 ill below the surface during the upwar1 
migration may shows depth differentiation of divided cells. This result indicates 
that dividing cells actively maintained no position, i.e., phased division 
occurred predominantly in migrating cells. Meanwhile, the maximal fraction cf 
divided cells during ascent movement agrees with the observations cf' 
Frempong (1982), that phased cell division of Ceratium hirundinella, occurred 
among cells not undergoing downward movement duling night. Eppley et al. 
e1968) commented that the Cachonina cells might undergo division during 
migration in the morning. Kohata & Watanabe (1986) discussed the relaticn 
between cell division cycle of the Rhaphidophcean, Heterosignla akashiwo, 
which is growing and vertically migrating simultaneously in a tank experimerr.. 
They found that non-migrating cells were only old or deactivated. 

Knowledge of phytoplankton standing stock is of limited value unless it .s 
coupled with estimate of the rate at which new material "is produced. 
Estimations of primary production are generally restricted to trophic levtl 
measurements for the entire phytoplankton community, and yet marry 
ecological questions require information on growth dynamic of the species. 

Information on the temporal patterns of division in additional species undtr 
various environmental conditions would provide insight into the pressures ~f 

different environmental factors governing the time of division. Furthtr 
experiments using n~n-photosynthetic, as well as photosynthetic dinoflagellate 
species should be ~onducted to determine whether generalities might be maCe 
concerning the timing of division in this group. 
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The interaction between diel vertical migration, nutrition and phased growth 
of dinoflagellate species may be nlore complex than thought originally. 
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