T'ABLE 2.-(continue)

| Total Length (mm) | Number of Fish | Average Scale Radius (X 10) | L/Sc <br> Ratio | Total length (mm) | Number of Fish | Average Scale Radius (X 10) | L/Sc <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 620 | 5 | 195.40 | 3.17 | 1060 | 1 | 394 | 2.69 |
| 630 | 2 | 199.50 | 3.16 | 1070 | 2 | 369 | 2.90 |
| 650 | 5 | 225.90 | 2.88 | 1080 | 2 | 460 | 2.35 |
| 660 | 1 | 268 | 2.46 | 1080 | 1 | 392 | 2.78 |
| 670 | 1 | 228 | 2.94 | 1100 | 2 | 422.2 | 2.61 |
| 680 | 1 | 224 | 3.04 | 1120 | 5 | 433.6 | 2.58 |
| 690 | 4 | 231.75 | 2.98 | 1140 | 1 | 404 | 2.82 |
| 700 | 1 | 252.50 | 2.77 | 1150 | 2 | 471 | 2.44 |
| 710 | 2 | 240 | 2.96 | 1160 | 1 | 440 | 2.64 |
| 720 | 3 | 234.5 | 3.07 | 1210 | 1 | 472 | 2.56 |
| 740 | 1 | 248 | 2.98 | 1220 | 3 | 490.7 | 2.49 |
| 760 | 3 | 265.33 | 2.86 | 1250 | 1 | 502 | 2.49 |
| 770 | 1 | 289 | 2.66 | 1260 | 1 | 524 | 2.40 |
| 780 | 5 | 282 | 2.77 | 1280 | 1 | 478 | 2.68 |
| 800 | 6 | 299.6 | 2.67 | 1300 | 1 | 452 | 2.88 |
| 820 | 2 | 32.4 | 2.53 | 1320 | 1 | 516 | 2.56 |
| 840 | 2 | 316 | 2.66 | 1340 | 4 | 545 | 2.46 |
| 850 | 3 | 354 | 3.40 | 1350 | 2 | 486 | 2.78 |
| 860 | 2 | 304.5 | 2.82 | 1370 | 2 | 535 | 2.56 |
| 870 | 1 | 354 | 2.46 | 1400 | 2 | 566 | 2.47 |
| 880 | 2 | 316 | 2.78 | 14.20 | 1 | 560 | 2.54 |
| 900 | 5 | 370.4 | 2.43 | 1430 | 2 | 481 | 2.97 |
| 910 | 1 | 312 | 2.92 | 1440 | 4 | 509 | 2.83 |
| 920 | 3 | 355 | 2.60 | 1450 | 1 | 540 | 2.69 |
| 930 | 3 | 336 | 2.77 | 1460 | 2 | 536 | 2.72 |
| 950 | 5 | 348 | 2.73 | 1490 | 1 | 540 | 2.76 |
| 960 | 1 | 394 | 2.44 | 1500 | 2 | 567 | 2.65 |
| 970 | 6 | 390.7 | 2.48 | 1520 | 1 | 522 | 2.91 |
| 980 | 7 | 365 | 2.68 | 1540 | 1 | 506 | 2.54 |
| 1000 | 3 | 382 | 6.62 | 1570 | 1 | 542 | 2.90 |
| 1010 | 3 | 359.5 | 2.81 | 1580 | 1 | 532 | 2.97 |
| 1020 | 1 | 354 | 2.88 | 1600 | 1 | 680 | 2.35 |
| 1030 | 1 | 356 | 2.89 | 1620 | 3 | 602 | 2.69 |
| 1040 | 3 | 370 | 2.81 | 1730 | 1 | 670 | 2.58 |
| 1050 | 2 | 360 | 2.92 |  |  |  |  |



Fia. 3.-Relation between body length and soale radius of Lates niloticus from the Nozah Hydrodrome
life (Van Oosten, 1953). The formula used was that proposed by E. Lea (1938) : $\mathrm{L} \mathrm{n}=\mathrm{C}+\frac{\mathrm{Sn}}{\mathrm{S}}(\mathrm{L}-\mathrm{C})$
where $L \mathrm{n}$ is the average length of fish when annulus n was formed, L is the average length of fish at the time of capture, Sn is the average distance of the scale radius to annulus $n, S$ is the average distance of the scale radius, and C is the correction factor.

Since the catch in all the years, with the exception of 1964 collection, consisted mostly of young age groups $(0,1 \& 11)$, so the study of the ralculated growth of Lates niloticus will be confined to the average calculated lengths as determined from the combination of the data for all age groups in all the years of collection. Also, the lack of sex records for all the individuals of the hydrodrome collections prevented the determination of possible sex differences in the growth rate of Lates niloticus, and so the tabulated data are the growth history of the seres combined.

The average calculated lengths of Table (3) for the different collections of Lates niloticus from the Nozha-Hydrodrome in the years 1955, 1956, 1957, 1958, 1961 \& 1964 were the grand average calculated legnths. Lates niloticus reached an average total length of 232 mm . at the end of the first year of life. This figure obtained by the back calculation coincides with the data obtained for the average empirical total length ( 230 mm .) of 218 young fish mostly caught at the end of the growing season (October-December) and belonging to age group 0 . These figures are also confirmed by that found by Jensen (1957) and Elster \& others (1960), who stated that the average calculated length at the completion of the first zone is 195 mm . for low-growing Lates niloticus from the trap catch and 231 mm . for fast-growing Lates niloticus from the commercial fisheries in November 1954-March 1955.

For other age groups, Jensem (1957) and Elster \& others (1960) reported that a hig specimen of Lates niloticus ( 1070 mm . long) was found dead and rotten in February 1955. The scales of this fish had five extremely clear zones and the six was under formation on the margin. This coincides with our results obtained for the average calculated length of age group VI (1079 mm.).

To ensure more representative values, the figures for the average growth increments in length of Lates niloticus in the above mentioned different years is represented in Table (4). It is clear, that the rate of growth is high during the first year of life, then the annual increment in length gradually decreases with the increase of age.

For the determaination of the general growth, the grand average calculated lengths (table 3) were compared with the summation of the average annual increments (table 4). It is found that the figures are nearly equal in the earlier years of life, while in the later years, the calculated lengths determined by the successive addition of the average annual increments
of length, is less than that determined by the grand average calculated lengths. These differences become more marked at older years of life. It should be mentioned that the numbers of specimens were so small at higher ages that the presence of only a few individuals of exceptionally slow or rapid growth would have a proiound effect on the determination of calculated lengths in the later years of life-

TABLE 3.-Geand average calculated lengths (mm) at the end of each year of life of all age groups of Lates niloticus of both sexes taken from the Nozha Hydrodrome in the period 1955-1964.

| $\begin{gathered} \text { Age } \\ \text { Group } \end{gathered}$ | $\begin{gathered} \text { No. of } \\ \text { Fish } \end{gathered}$ | Average length at capture | Year of Life |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| I | 307 | 335 | 229 |  |  |  |  |  |  | 643 | Tot of | $\begin{aligned} & \text { al No } \\ & \text { Fish } \end{aligned}$ |  |
| II | 180 | 480 | 26 | 422 |  |  |  |  |  |  |  |  |  |
| III | 53 | 697 | 244 | 440 | 611 |  |  |  |  |  |  |  |  |
| IV | 20 | 886 | 243 | 442 | 619 | 770 |  |  |  |  |  |  |  |
| V | 30 | 986 | 242 | 419 | 592 | 757 | 907 |  |  |  |  |  |  |
| VI | 16 | 1108 | 232 | 413 | 586 | 753 | 904 | 1006 |  |  |  |  |  |
| VII | 6 | 1230 | 255 | 453 | 632 | 797 | 927 | 1075 | 1152 |  |  |  |  |
| VIII | 11 | 1322 | 257 | 455 | 625 | 802 | 695 | 1080 | 1194 | 1283 |  |  |  |
| IX | 13 | 1457 | 253 | 460 | 649 | 843 | 999 | 1141 | 1257 | 1342 | 1421 |  |  |
| X | 6 | 1586 | 242 | 459 | 642 | 838 | 990 | 1129 | 1257 | 1367 | 1469 | 1553 |  |
| XI | 1 | 1730 | 210 | 434 | 646 | 826 | 987 | 1137 | 1269 | 1187 | 1289 | 1570 | 1652 |
| Grand Average Calculated length |  |  | 232 | 429 | 612 | 782 | 937 | 1079 | 1222 | 1327 | 1439 | 1555 | 1652 |

TABLE 4.-Giand average incremants in length (mm) of Lates niloticus of both sexes taken from the Nozh-Hydrodroms in the period 1955-1964.

| $\underset{\text { Ago }}{\text { Agoup }}$ | $\begin{gathered} \text { No. } \\ \text { of } \end{gathered}$ | Year of Life |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| I | 307 | 229 |  |  |  |  |  |  |  | $\begin{aligned} & 3 \mathrm{TO} \\ & \text { of } \mathrm{F} \end{aligned}$ | TAL |  |
| II | 180 | 226 | 1.6 |  |  |  |  |  |  |  |  |  |
| III | 53 | 244 | 196 | 171 |  |  |  |  |  |  |  |  |
| IV | 20 | 243 | 199 | 177 | 151 |  |  |  |  |  |  |  |
| V | 30 | 242 | 177 | 173 | 165 | 150 |  |  |  |  |  |  |
| VI | 16 | 232 | 181 | 173 | 167 | 151 | 102 |  |  |  |  |  |
| VII | 6 | 255 | 198 | 179 | 165 | 130 | 148 | 77 |  |  |  |  |
| VIII | 11 | 257 | 198 | 170 | 177 | 163 | 115 | 114 | 89 |  |  |  |
| IX | 13 | 253 | 207 | 189 | 194 | 156 | 142 | 116 | 85 | 79 |  |  |
| X | 6 | 242 | 217 | 183 | 196 | 152 | 139 | 128 | 110 | 102 | 84 |  |
| XI | 1 | $\because 0$ | 224 | 212 | 180 | 161 | 150 | 132 | 118 | 98 | 85 | 82 |
| Grand iserage Increment |  | 232 | 195 | 175 | 196 | 152 | 125 | 112 | 92 | 87 | 84 | 82 |
| Sum of average Increment |  | 232 | 427 | 602 | 771 | 923 | 1048 | 1160 | 1252 | 1339 | 1423 | 1505 |

The study of the calculated growth of certain individual age groups can be employed for the collection of 1964 separately to show the annual fluctuation in growth rate (Table 5). It is obvious that the growth rate of the 1964 collection is nearly the same as that calculated from the combination of all the collections in the different years.

The study of annual fluctuations in growth rate of Lates niloticus as determined from the analysis of the growth increments of the various year classes are given in Table (6). For example, fishes of age group III had an average growth increment more than the grand average in all their lifes. Also fishes of age group IX had an average increment of growth more than the grand average in the first seven years of life. On the other hand, fishes of age group V had an average increment of growth less than the grand

TABLE 5.-Grand average calculated lengths (mm) at the end of each year of life of all age groups of Lats niloticus of both sexestaken from the Nozha Hydrodrome in the year 1964.

| $\begin{gathered} \text { Age } \\ \text { Group } \end{gathered}$ | No. of Fish | Average length at capture | Year of Life |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 56 | 7 | 8 | 9 | 10 | 11 |
| I | - | - | - |  |  |  |  |  |  |  | 3 To of fi | $\text { tal } N$ sh |  |
| II | 13 | 530 | 218 | 418 |  |  |  |  |  |  |  |  |  |
| III | 21 | 761 | 253 | 466 | 648 |  |  |  |  |  |  |  |  |
| IV | 14 | 870 | 244 | 630 | 630 | 788 |  |  |  |  |  |  |  |
| V | 28 | 984 | 242 | 415 | 588 | 754 | 908 |  |  |  |  |  |  |
| VI | 12 | 1107 | 237 | 418 | 577 | 739 | 890 | 394 |  |  |  |  |  |
| VIII | 6 | 1230 | ¢55 | 453 | 632 | 797 | 927 | 1075 | 1152 |  |  |  |  |
| VIII | 10 | 1319 | 258 | 460 | 631 | 798 | 925 | 1071 | 1185 | 1276 |  |  |  |
| IX | 12 | 1459 | 2524 | 64 | 657 | 842 | 999 | 1140 | 1254 | 1340 | 1420 |  |  |
| X | 6 | 1586 | 242 | 459 | 642 | 838 | 990 | 1129 | 1257 | 1367 | 71469 | 1553 |  |
| XI | 1 | 1730 | 210 | 434 | 646 |  | 987 |  | 1269 | 1387 | 71485 | 1570 | 1652 |
| Grand Average Calculated length |  |  | 244 | 440 | 621 | 784 | $9: 5$ | 1078 | 1218 | 1325 | 1439 | 1555 | 1652 |

average throughout the first four years of life. Also fishes of age group VI had an average increment of growth below the grand average throughout the whole life. Old fishes of age group X and XI, with the exception of their first year of life, had an average increament of growth more than the grand average.

TABLE 6.-Gzand average increments in length (mm) of Lates niloticus of both sexes taken from the Nozh-Hydrodrome in the year 1964.

|  |  |  |  |  |  |  | ear of | Life |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| I | - | - |  |  |  |  |  |  | 23 | T |  |  |
| II | 13 | 218 | 200 |  |  |  |  |  |  |  |  |  |
| III | 21 | 253 | 213 | 182 |  |  |  |  |  |  |  |  |
| IV | 14 | 244 | 200 | 186 | 155 |  |  |  |  |  |  |  |
| V | 28 | 242 | 173 | 173 | 166 |  |  |  |  |  |  |  |
| VI | 12 | 237 | 181 | 159 | 162 | 151 | 104 |  |  |  |  |  |
| VII | 6 | 255 | 198 | 179 | 165 | 130 | 148 | 77 |  |  |  |  |
| VIII | 10 | 258 | 202 | 171 | 167 | 154 | 119 | 114 | 91 |  |  |  |
| IX | 12 | 252 | 212 | 193 | 185 | 157 | 141 | 114 | 86 | 80 |  |  |
| X | 6 | 242 | 217 | 183 | 196 | 152 | 139 | 128 | 110 | 102 | 84 |  |
| XI | 1 | 210 | 224 | 212 | 180 | 161 | 150 | 132 | 118 | 98 | 85 | 82 |
| Grand Average Increment. |  | 244 | 178 | 169 | 178 | 152 | 128 | 111 | 94 | 88 | 84 | 82 |
| Sum of average Inecrement. |  | 244 | 440 | 618 |  | 939 | 1067 | 1178 | 1272 | 1360 | 1444 | 1526 |

To give a clear picture of the grand average calculated lengths at the end of each year of life, the changes in growth rate (increments of length) are represented in percentage to the total sum of increments during the whole life of the fish (Table 7). It is clear that Lates niloticus made by far their best growth in length during the first year of life. The growth rate declined sharply in the second year when the increment was less by about 40 mm , than that of the first year. The growth during the third through the eighth years continued to decrease gradually. The growth during the 9 th, 10th, and 11th year also continued to decrease but at much slower rate than before.
T.ıBLE 7.-Average calculated length at the end of each year oflife, annual increment of growth in length and annual percentage ir.crease in lergth of Lates niloticus from the Nozha Hydrodrome in 1955-1964.

| Age <br> Groups | Average caleu- <br> lated length <br> $(\mathrm{m}, \mathrm{m})$ | Annual <br> Increment <br> $(\mathrm{mm})$ | Annual <br> Increment <br> (\%) |
| :--- | :---: | :---: | :---: |
| I | 232 | 232 | $15,4,1$ |
| II | 429 | 195 | 12,96 |
| III | 612 | 175 | 11,63 |
| IV | 782 | 169 | 11,23 |
| V | 937 | 152 | 10,10 |
| VI | 1079 | 125 | 8,31 |
| VII | 1222 | 112 | 7,44 |
| VIII | 1327 | 92 | 6,11 |
| IX | 1439 | 87 | 5,78 |
| X | 1555 | 84 | 5,58 |
| XI | 1652 | 82 | 5,45 |

## The_Season's Growth

It is possible to estimate the progress of growth during the season by comparing the "partial-growth" completed at the time of capture with tho total growth which the fish would have been completed at the end of the pollowing scason. In other words, by comparing the length increment for that part of the growing season preceeding capture with the length increment for the entire season as calculated from samples of the same year class taken in subsequent calender years.

The best information on the increase in length of Lates niloticus from the Nozha Hydrodrome during the growing season was supplied by the collections of 1955, 1957 and 1961. The data of $O$ and I age groups were mostly from the collection of 1955 , while that of age group II were from the collection of 1961. The data of 1957 collection were sometimes used to fill the gaps in forming Table (8).

Among the best represented age groups ( $\mathrm{O}, \mathrm{I}$ and II) the total growth increment in December was nearly the same as that computed for the period January-March. Therefore, in January, February and March practically no growth takes place. On the other hand, the percentages of partial-growth of Lates niloticus captured in different months as shown from Table (8) and Figure (4), indicate that in August the fish had completed about 50 percent of its full-season growth and by reaching November about $95 \%$ of fullseason growth was completed. It can also be noticed, that for the O-group, the monthly increment of growth gradually increase from June through September, where it reaches its maximum value, then it begins to decrease sharply from October to December. For I and II age groups, the monthly increment of growth was high in September and October, while in August it was comparatively lower than in all other months of the growing season. In December, the monthly increment of growth was very low and this was most probably due to the lowering of temperature and the ending of the growing season during this month.

Unfortunately, the April data were lacking from all our collections, but Elster and others (1960) working on other data collected from the Nozhahydrodrome in 1955, found that in March-April, zone formation was observed very commonly on the margin of the scales of Lates. So it can be concluded that the growing season for Lates niloticus in the Nozha Hydrodrome begins in April and ends by December.

TABLF 8．－Comparison of the amount of seasonal growth（Total and monthly increment in mm and \％）of certain age groups of Lates niloticus from the Nozha Hydrodrome

| Age <br> Group |  | 寻 | 䓓 | $\stackrel{8}{3}$ | $\frac{\stackrel{\rightharpoonup}{5}}{}$ |  | 荢 | $\begin{aligned} & \text { H } \\ & \text { § } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \text { \& } \\ & \text { 品 } \\ & 0 \\ & \text { o } \end{aligned}$ |  | \％ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Number of fisb |  |  | 1 | 3 | 12 | 13 | 4 | 4 | 26 | 15 | 6 | 8 |
|  | Total increment（mm） |  |  | 38 | 78 | 120 | 164 | 200 | 226 | 237 | 235 | 232 | 220 |
|  | Total incu ement（\％） |  |  | 16.0 | 32.9 | 50.6 | 69.2 | 84.4 | 95.4 | 100.0 |  |  |  |
|  | Monthly increment（mm） |  |  | 38 | 40 | 42 | 44. | 36 | 26 | 11 |  |  |  |
|  | Monthly increment（\％） |  |  | 6.0 | 16.9 | 17.7 | 18.6 | 15.2 | 11.0 | 4.6 |  |  |  |
| I | Number of fish ．．． |  |  | 21 | 3 | 5 | 5 |  | 41 |  | 8 | 7 | $4$ |
|  | Total increment（mm） |  | 28 | 58 | 84 | $104$ | $139$ | $172$ | 200 | $214$ | 214 | 219 | 215 |
|  | Total increment（\％） |  | 13.1 | 27.1 | 39.3 | 48.6 | 65.0 | 80.5 | 93.5 | 100.0 |  |  |  |
|  | Monthlyincrement（mm） |  | 28 | 30 | $26$ |  | $35$ | $33$ | $28$ | $14$ |  |  |  |
|  | Monthly increment（\％） |  | 13.1 | 14.0 | 12.2 | 9.3 | 16.4 | 15.5 | 13.1 | $6.5$ |  |  |  |
| 1］ | Number of fish |  | 11 | 4 | 5 | 3 | 8 | 2 | 1 | 1 | 7 | 9 | 1 |
|  | Total increment（mm） |  | 23 | 56 | 78 | 98 | 132 | 165 | 192 | 208 | 207 | 209 | 212 |
|  | Total increment（\％） |  | 11.1 | 24.1 | 37.5 | 47.1 | 63.4 | 79.2 | 92.2 | 100.0 |  |  |  |
|  | Monthly increment（mm） |  | 23 | 27 | 28 | 20 | 34. | 33 | 27 | 16 |  |  |  |
|  | Monthly increment（\％） |  | 11.1 | 13.0 | 13.4 | 9.6 | 16.3 | 15.9 | 13.0 | 7.7 |  |  |  |

In spite of some uncertainties as to the dates at which the growing season of Lates niloticus begins and elus in the Nozha Hydrodome, and inspite of the strong probability of some annual variation in these dates, we can generally conciude that the growing season of that species in this locality is not less than 8 months long.

An interesting question arises, however, concerning the factor or factors that determme the begmang and the end or the growing season. It is well known that changes in the metaboinc rate of hisnes are must crosely conmected with changes in the temperature of the surrounding water. in many cases changes in water temperature tunction as a natural stumulus which determines the start of some biological process such as felding, breedin, and mugration (Nikoisky, 1963).

For Lates niloticus in the Nozha Hydrodrome, the time of annulus formatiun and the progressive increase of growth beyond the last annulus were affected, to a more or less degree, by water temperature. This is quite obvious irom Figure (4), which shows the relation between the percentages of partial growth of Lates niloticus captured from the Nozha hydrodrome in different months and the water temperature recorded during the year 1956.

For fishes of I and II age groups, the percentange increase of growth was $12.1 \%$ in May when the water temperature was $22.4^{\circ} \mathrm{C}$. In June and July, as the water temperature rose to $20.7 \& 27.6^{\circ} \mathrm{C}$ the percentage increase of growth was $25.5 \& 38.1$ respectively. In August, although the water temperature increased to about $29.7^{\circ} \mathrm{C}$ the fish added only $9.45 \%$ of its annual growth. In September, October and November, as the water temperature decreased to $26.2,23.7$ and $20.9^{\circ} \mathrm{C}$, the fish gained $16.35,15.70$ and $13.05 \%$ of its annual growth respectively. In December the water temperature decreased to about $15.2^{\circ} \mathrm{C}$ and the fish added only $7.1 \%$ of its annual growth, completing the full season's growth.

Consequently, it would appear that temperature is the factor controlling the seasonal course of growth. Lates niloticus being very sensitive to low temperature, markedly decrease its feeding activity or may stop feeding completely in the early winter, when the water temperature becomes less than $15^{\circ} \mathrm{C}$ and continues starvation during the whole winter till the water temprature rises again in the following spring.

## Length-Weight Relationship

The study of the general growth in weight of Lates niloticus was based on 852 fish ranging from 110 to 1730 mm in total length and including all specimens employed in the investigation of age and growth and also those fish, whose age could not be determined.


Equation of the type $W=c L^{n}$ is usually the more suitable in the study of length-weight relationship, where $\mathbf{c}$ and n are constants, whose values are computed by the logarithms of the total lengths and actual weights (Beckman, 1948). The fitting of the parabolas to the lengthweight data yielded the following equation .

$$
\begin{aligned}
\log W & =-5.1114+3.0889 \log \mathrm{~L} \\
W & =0.7738 \times 10^{-5} \mathrm{~L}^{3.0889}
\end{aligned}
$$

or
where $W$ is the total weight in grams and $L$ is the total length in mm .


Fia. 5.-Length-weight relationship of Lates nilotticus. The smooth "curve represents the calculated weights and the dots represent the emperical weights. NILOTIOUS C. \& V.) IN THE NOZHA-HYDRODROME

TABLE 9.-Langth-Weight Relationship and the coefficient of condition of Lates Lates niloticus from the Nozha Hydrodrome in 1955-1964.

| Total Length (mm) | Number of Fish | Average Empirical Weight (gram) | $\underset{\text { (gram) }}{\substack{\text { Caloulated Wht }}}$ | Coefficient of Condition (k) |
| :---: | :---: | :---: | :---: | :---: |
| 110 | 2 | 15 | 15.64 | 1.127 |
| 120 | 1 | 20 | 20.46 | 1.157 |
| 130 | 2 | 26 | 26.01 | 1.183 |
| 140 | 2 | 32 | 32.94 | 1.166 |
| 150 | 5 | 40 | 39.84 | 1.185 |
| 160 | 6 | 52 | 49.75 | 1.270 |
| 170 | 13 | 60 | 59.99 | 1.221 |
| 180 | 24 | 72 | 71.61 | 1.235 |
| 190 | 24 | 82 | 84.56 | 1.196 |
| 200 | 29 | 94 | 99.10 | 1.175 |
| 210 | 27 | 112 | 115.3 | 1.206 |
| 220 | 17 | 135 | 133.0 | 1.268 |
| 230 | 18 | 149 | 152.6 | 1.225 |
| 240 | 30 | 184 | 174.1 | 1.331 |
| 250 | 34 | 207 | 197.4 | 1.325 |
| 260 | 42 | 239 | 223.0 | 1.360 |
| 270 | 24 | 268 | 255.5 | 1.362 |
| 280 | 15 | 304 | 280.3 | 1.385 |
| 290 | 10 | 312 | 312.3 | 1.279 |
| 300 | 9 | 354 | 346.8 | 1.311 |
| 310 | 11 | 391 | 384.0 | 1.312 |
| 320 | 9 | 416 | 433.1 | 1.270 |
| 330 | 7 | 435 | 465.6 | 1.210 |
| 340 | 12 | 482 | 511.0 | 1.226 |
| 350 | 14 | 542 | 559.0 | 1.264 |
| 360 | 31 | 595 | 609.0 | 1.275 |
| 370 | 23 | 671 | 663.0 | 1.325 |
| 380 | 39 | 715 | 720.0 | 1.303 |
| 390 | 24 | 781 | 780.0 | 1.317 |
| 400 | 22 | 844 | 844.0 | 1.255 |
| 410 | 14 | 880 | 910.0 | 1.277 |
| 420 | 17 | 1032 | 980.0 | 1.393 |
| 430 | 14 | 1061 | 1054.0 | 1.334 |
| 440 | 15 | 1165 | 1132.0 | 1.368 |
| 450 | 13 | 1257 | 1213.0 | 1.379 |
| 460 | 15 | 1351 | 1299.0 | 1.388 |
| 470 | 14 | 1366 | 1388.0 | 1.316 |
| 480 | 11 | 1414 | 1481.0 | 1.279 |
| 490 | 8 | 1500 | 1579.0 | 1.275 |
| 500 | 11 | 1575 | 1681.0 | 1.260 |

BULLETIN OF THE INSTITUTE OF OCEANOGRAPHY \& FISHERIES 385

TABLE 9.-(conitinued)

| Total Length (mm) | Numher of Fish | Average Empirical Weight (gram) | Calculated Weight (gram) | Coefficient of Condition (k) |
| :---: | :---: | :---: | :---: | :---: |
| 510 | 6 | 1690 | 1786.0 | 1.470 |
| 520 | 4 | 2013 | 1897.0 | 1.432 |
| 530 | 2 | 2123 | 2012.0 | 1.426 |
| 540 | 3 | 2119 | 2131.0 | 1.346 |
| 550 | 4 | 2150 | 2256.0 | 1.292 |
| 560 | 3 | 2290 | 2385.0 | 1.304 |
| 570 | 5 | 2410 | 2520.0 | 1.301 |
| 580 | 5 | 2533 | 2657.0 | 1.298 |
| 590 | 3 | 2641 | 2803.0 | 1.272 |
| 600 | 3 | 2900 | 2885.0 | 1.343 |
| 610 | 2 | 3250 | 3106.0 | 1.432 |
| 620 | 5 | 3030 | 3266.0 | 1.271 |
| 630 | 2 | 3000 | 34300 | 1.200 |
| 650 | 6 | 4334 | 3779.0 | 1.578 |
| 670 | 1 | 3750 | 4151.0 | 1.247 |
| 680 | 1 | 4000 | 3344.0 | 1.272 |
| 690 | 2 | 4500 | 454.3 .0 | 1.370 |
| 700 | 2 | 5125 | 4751.0 | 1.494 |
| 710 | 2 | 5000 | 4966 | 1.397 |
| 720 | 3 | 5250 | 5182 | 1.407 |
| 740 | 1 | 6000 | 5640 | 1.481 |
| 760 | 4 | 6875 | 6003 | 1.566 |
| 780 | 4 | 7125 | 6637 | 1.501 |
| 800 | 7 | 7664 | 7178 | 1.458 |
| 820 | 2 | 7875 | 7745 | 1.428 |
| 840 | 2 | 8500 | 8347 | 1.434 |
| 850 | 3 | 9083 | 8654 | 1.479 |
| 860 | 2 | 9000 | 8974 | 1.415 |
| 880 | 2 | 9000 | 9634 | 1.321 |
| 900 | 5 | 10500 | 10320 | 1.440 |
| 910 | 1 | 10250 | 10680 | 1.345 |
| 920 | 3 | 11000 | 11050 | 1.397 |
| 930 | 2 | 12600 | 11440 | 1.566 |
| 950 | 5 | 13000 | 12200 | 1.516 |
| 960 | 1 | 13200 | 12610 | 1.492 |
| 970 | 5 | 14250 | 13020 | 1.561 |
| 980 | 7 | 14357 | 13420 | 1.525 |
| 1000 | 4 | 13625 | 14300 | 1.363 |
| 1010 | 3 | 15000 | 14740 | 1.456 |

NILOTICUS C. \& V.) IN THE NOZHA-HYDRODROME

TABLE 9.-cont.

| Total Length (mm) | Number of Fish | Average Empirical Weight (gram) | Calculated Weight (gm) | Coefficient of Condition (k) |
| :---: | :---: | :---: | :---: | :---: |
| 1020 | 1 | 15000 | 15200 | 1.413 |
| 1030 | 1 | 16000 | 15660 | 1.413 1.464 |
| 1040 | 2 | 16000 | 16140 | 1.422 |
| 1050 | 1 | 17500 | 16630 | 1.512 |
| 1060 | 1 | 20000 | 17120 | 1.679 |
| 1070 | 2 | 20750 | 17620 | 1.694 |
| 1080 | 2 | 18750 | 18110 | 1.488 |
| 1090 | 1 | 20000 | 18650 | 1.544 |
| 1100 | 2 | 18750 | 19200 | 1.409 |
| 1120 | 4 | 20500 | 20290 | 1.459 |
| 1140 | 1 | 20000 | 21430 | 1.350 |
| 1150 | 2 | 21500 | 22020 | 1.414 |
| 1160 | 1 | 23000 | 22520 | 1.474 |
| 1210 | 1 | 26000 | 25760 | 1.468 |
| 1220 | 2 | 28916 | 25430 | 1.592 |
| 1250 | 1 | 27500 | 28480 | 1.408 |
| 1280 | 1 | 30500 | 29200 | 1.525 |
| 1300 | 1 | 29000 | 30650 | 1.383 |
| 1320 | 1 | 32000 33000 | 32150 | 1.457 |
| 1340 | 3 | 36625 | 35710 | 1.435 |
| 1350 | 2 | 32167 | 36130 | 1.307 |
| 1370 | 2 | 40000 | 37830 | 1.556 |
| 1400 | 1 | 38000 | 40420 | 1.385 |
| 1420 | 1 | 36000 | 42240 | 1.257 |
| 1430 | 2 | 43000 | 43150 | 1.470 |
| 1440 | 3 | 45000 | 44110 | 1.507 |
| 1450 | 1 | 46000 | 45060 | 1.509 |
| 1460 | 2 | 45000 | 46040 | 1.446 |
| 1490 | 1 | 48000 | 49040 | 1.451 |
| 1500 | 2 | 51000 | 50020 | 1.511 |
| 1520 | 2 | 51250 | 52100 | 1.459 |
| 1540 1570 | 1 | 52000 | 54250 | 1.425 |
| 1570 1580 | 1 | 55000 | 57590 | 1.421 |
| 1600 | 1 | 55000 54500 | 58750 | 1.394 |
| 1620 | 2 | 54500 58000 | 61050 63450 | 1331 |
| 1730 | 1 | 68000 | 77690 | 1.313 |

TABLE 10.-Average calculated length and weight at the end of each year of life, annual increment of growth and percentage increment in weight of Lates niloticus from the Nozha Hydrodrome in 1955-64.

| $\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$ | Calculated Length (mm) | Calculated wight (gram) | Increment in weight | Percentage of incerement |
| :---: | :---: | :---: | :---: | :---: |
| I | 232 | 157 | 157 | 0.23 |
| II | 429 | 1047 | 890 | 1.32 |
| IIf | 612 | 3138 | 2091 | 3.10 |
| IV | 782 | 6689 | 3551 | 5.27 |
| V | 937 | 11690 | 5001 | 7.42 |
| VI | 1079 | 18090 | 6400 | 9.50 |
| VII | 1222 | 26610 | 8520 | 12.64 |
| VIII | 1327 | 34270 | 7660 | 11.37 |
| IX | 1439 | 48980 | 9710 | 14.41 |
| X | 1555 | 55900 | 11920 | 17.69 |
| XI | 1652 | 67390 | 11490 | 17.05 |

TABLE 11.--Coefficier.t of Condition for differer.t length-groups of Lates niloticus from the Nozha Hyd odome in 1955-1964.

| Length- <br> Group (mm) | No. of <br> Fish | Coeff. of <br> Condition | Leagth- <br> Group (mm) | No. of <br> Fish | Coeff. of <br> Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $110-200$ | 108 | 1.203 | $1010-1100$ | 16 | 1.500 |
| $210-300$ | 226 | 1.311 | $110-1200$ | 68 | 1.436 |
| $310-400$ | 210 | 1.287 | $1210-1300$ | 7 | 1.489 |
| $410-500$ | 132 | 1.334 | $1310-1400$ | 9 | 1.457 |
| $510-600$ | 38 | 1.352 | $1410-1500$ | 12 | 1.466 |
| $610-700$ | 21 | 1.397 | $1510-1600$ | 6 | 1.415 |
| $710-800$ | 21 | 1.475 | $1610-1700$ | 2 | 1.364 |
| $810-900$ | 16 | 1.427 | $1710-1800$ | 1 | 1.313 |
| $910-1000$ | 28 | 1.488 | - | - | - |

The value of the exponent ( $\mathrm{n}=3.0889$ ) shows that the weight of Lates niloticus in the Nozha Hydrodrome increases to a power greater than the cube of the length and this indicates that the body shape changes rapidly as the fish grow in length.

The general length-weight data of Table (9) are represented graphically in figure (5). The smoith curve represents the calceulated weights, while the dots show the average empirical weights.

Comparison of the actual and calculated weights show that the equation fits the empirical data reasonably well. The greatest difference between the actual and calculated weights are encountered in larger fish and are probably caused by the small number of these fish. Extremely close agreement between actual and computed weights should not be expected since the empirical values were derived from the combination of all available data regardless of sex, state of organs, or month, or year of capture.

To give a clear picture, the values of growth increments in weight for each year of life is given in Table (10) in percentage to the total weight reached by the fish at the end of life span (12 years old). From the figures it is clear that the annual increments of weight of Lates niloticus exhibited a general upward trend from the first to the 10th year of life. In only one year of life (the eighth) the increment slightly fal below the previous year and this may be explained by the combination of sexes, beside the small number of fish represented at this age.

The growth increment in weight is very small during the first year of life and continuously increases with increasing age till it reaches its maximum value at the 10 th year of life, after which the increment in weight begins to decrease.

## The Coefficient of Condition

Because the growth in weight is proportional to the growth in volume, the cub relationship of the length to the weight of a fish is usually used for the purpose of comparing the condition of a species. The equation is in the form :

$$
\mathrm{K}=\frac{\mathrm{W} \times 10^{5}}{\mathrm{~L}^{3}}
$$

where $W$ is the weight in grams and L is the length in millimeters. The
actual values of the coefficient of condition (K) in Table (9), however, show an irregular variation. These irregularities correspond with the discrepancies between the actual and calculated weights discussed before. But when comparing the coefficient of condition for different lengthgroups (Table 11), we can generally say that the coefficient of condition was low for the young fish and gradually increased as the length increased to about 800 mm .

The values of K then tended to remain high for fishes up to 1500 mm . length. Thereafter the coefficient tended to decrease with the increase in length. The maximum value of $K$ was attained at lengths $1010-1100 \mathrm{~mm}$ 。

## Other Biological Informations

The growth of fry and the spawning time of Lates niloticus :
Some fry collections were made in the beginning of June, July and August of 1965. The total fry lengths (in mm) and weights (in gram) are given in Table (12). On the 6th of June the youngs of Lates niloticus attained a total length of $17-35 \mathrm{~mm}$ (average $=28 \mathrm{~mm}$ ) ond a weight of $0.08-0.53 \mathrm{gm}$ (average $=0.30 \mathrm{gm}$ ). On the 7th of July the youngs attained an average total length of 65 mm . and an average weight of 2.7 gm . By the 4th of August the youngs reached a total length of $60-100 \mathrm{~mm}$. (average $=83 \mathrm{~mm}$ ) and a weight of $3.00-9.00 \mathrm{gm}$. (average $=6.20 \mathrm{gm}$ ).

If growths was rapid before June 6 as between June 6 and July 7, the tabulated data do provide some information that confirm the month of May (specially the first half) as the probably spawning time of Lates niloticus in the Nozha Hydrodrome. This does not agree with what had been mentioned by Elster \& others (1960). They observed two males (of 49 and 65 cm long and about 2 years old) with running milt, on 30 November 1954 and assumed this as strong indication that Lates'niloticus spawn in late autumn or winter.

## The Survival of Lates niloticus during winter :

It has to be mentioned, that some mortalities are usually observed among Lates niloticus and some other Nile fishes in January and February when the water temperature dropped to less than $10^{\circ} \mathrm{C}$, specially when this relatively low temperature prolonged for some days. A similar case
was found by Koura and El-Bolock (1958) for Tilapia mossambica trans. planted in Egypt. They recorded great mortalities when the water temperature dropped to less than $14^{\circ} \mathrm{C}$ for a long period, that always exceeds 10 days. They concluded that this species was not able to acclimatize itself in Egypt due to this relatively low temperature in winter.

TABLE 12.-Comparison of growth (total length in mm and weight in gm) of the fries of Lates niloticus from the Nozha Hydrodrome in 1965.

| Serial Number | June 6 |  | July 7 |  | August 4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { length } \\ & (\mathrm{mm}) \end{aligned}$ | weight (gm) | length (mm) | weight (gm) | length <br> (mm) | weight <br> (gm) |
| 1 | 17 | 0.08 | 55 | 2.0 | 60 | 3.0 |
| 2 | 18 | 0.09 | 60 | 2.0 | 70 | 4.0 |
| 3 | 24 | 0.19 | 80 | 4.0 | 80 | 5.5 |
| 4 | 27 | 0.20 |  |  | 80 | 6.0 |
| 5 | 32 | 0.38 |  |  | 85 | 7.0 |
| 6 | 32 | 0.39 |  |  | 90 | 6.5 |
| 7 | 34 | 0.52 |  |  | 95 | 9.0 |
| 8 | 35 | 0.53 |  |  | 100 | 8.5 |
| Average. | 28 | 0.30 | 65 | 2.7 | 83 | 6.2 |

The death of Lates niloticus in winter, was observed many times by fishermen in different places in the northern part of Egypt. This phenomenon was also observed during winter in the Serow fish farm, when the depth of water in the ponds did not exceed 1.0 meter. Consequently in shallow water areas (like the Egyptian Delta lakes), the Nile Perch is not able to withstand the relatively low water temperature of winter and in many cases some mortality takes place. So a winter temperature of $10^{\circ} \mathrm{C}$ may be considered as a limiting factor in the geographical distribution of Lates niloticus into higher latitudes.

## The Behaviotr of Lates niloticus :

Elster (1960) and El-Medani (1966) had recorded that crustaceans, water insects and some other invertebrates were very frequent in the food of young Lates niloticus and form at least for fishes up to 40 cm . in length (about 2 years old) an import part of the diet. This feeding character makes the fish to le active in obtaining their food and so they are easily caught with the ordinary fishing methods.

By reaching maturity (more than 40 cm in length) the Lates niloticus becomes essentially carnivorous, feeding on Tilapia and many other sepcies of fish including their own young, and so the Lates niloticus changes its living behaviour. They always keep in deep water, using shelters to hide. Staying quiet in their hidding places, till any fish (victim) passes near by. Suddenly the Lates niloticus attacks its prey and return back to its shelter again. This behaviour, beside the large size and strength that Lates attains, makes it very difficult to catch the large Lates by the ordinary fishing gears.

## SUMMARY

This study was based on materials obtained from the Nozha Hydrodrome in the period from 1955 to 1964. All Lates niloticus ( 968 specimens) were taken with nets (gill and trammel), as well as seines and wire traps.

Fishes of age groups 0 and I were typically dominant in the commerical catch, while age group II was rare. The partial draining of the Hydrodrome and the extensive fishing carried out in 1964 enabled us to obtain a number of large fishes which were nearly impossible to catch with the ordinarily fishing methods. The largest fish in the collections was a single individual having a total length of 173 cm , a weight of 68 kgm . and aging 12 years(age-group XI).

Ages were determined and individual growth histories were computed from the examination of the scales of 694 fish. Body-scale relationship is shown to be linear and appropriate corrections were made in all calculations. The general growth data showed that the Nile perch made by far the greatest growth in length ( 232 mm ) during the first year of life. The growth increments of the later years exhibited a regular tendency to decrease with increasing age.

The season's growth of Lates niloticus in the Nozha Hydrodrome mostly begins in April and ends by December and so the growing season of this species in this locality is not less than 8 months long. The growing season of this fish is mostly affected by water temperature, the decrease of which to about $14^{\circ} \mathrm{C}$ practically hinders the growth of this tropical species.

Over the length interval ( $110-1730 \mathrm{~mm}$ ), the length-weight relationship was described satisfactorily by the equation $W=0.7738 \times 10-5 \times$ $L^{8.0889}$. The agreement between empirical weights and those computed from this equation was reasonably good at lengths represented by far numbers of fish. The actual weights of larger fish were less than the weights computed because of the combination of sexes, beside the smaller number of fish present.

The calculated annual growth in weight increased from 157 grams in the first year of life to a maximum value of about 12 kg . in the 10th year. In the succeeding years the increment decreased consistently to about 11 kg . in the 12th year of life.

The coefficient of condition (k) showed some correlation with the length of the firsh. The value of (k) was low for younger fishes and increased with increasing length till it reached high values at $1000-1500 \mathrm{~mm}$. Thereafter, it decreased with the increase of length.

In the Nozha Hydrodrome the spawning time of Lates natoticus as decided from the growth rate of fry was found to take place probably in the month of May.

In the shallow water areas of the Northern part of Egypt, some mortalities of the Lates niloticus were observed in January and February when the water temperature decreased to less than $10^{\circ} \mathrm{C}$ for some days. So the survival (over wintering) of this species is very much affected by low temperatures.

By reaching maturity, the Lates niloticus changes its living behaviour. The mature fish keep always quiet in deep water and feed only on fishes. Owing to this special living characters, beside its powerful strength, the large sizes of Lates niloticus can not be caught by the ordinary fishing gears.

## LITERATURE CITED

Beokman, W.C. (1948).-The length-weight relationship, factor for conversions between standard and total lengths and coefficient of condition for seven Michigan fishes. Trans. Am. Fish. Soc., Vol. 75 (1945)- pp. 237-256

Bo dlenger, G.A. (1907).-The Fishes of the Nile. Publ. by Hugh Reet, Ltd:, London.
El-Medani, Y.I. (1966).-Feeding and growth of some commercial fishes of Gabal El-Awlia Reservoir (Sudan). Synopsis of thesis for the Candidate's degree in Biology. Publ. by the Moscow State University (In Russian).

Elster, H.J., Jensen, K.W. and Soibntifio Staff of Alexandria Institute of HydrobioLOGY (1960).-Limnological and Fishery Investigation of Nozha-Hydrodrome near Alexandria. 1954-1956. Min. Agr. Egypt, Hedrobiological Department. Notes and Memories No. 43.

Hile, R. (1948).-Standardization of methods of experssing length and weights of fish. Trans. Amer. Fish. Soc., Vol. 75 (1945), pp. 157-164.

Jensen, K.W. (1957).-Determination of age and growth of Tilapia nilotica L., T. galilaea, T. zillii Gerv. and Lates niloticus C. and V. by means of their scales. Det. Kongelige Norske Vifensk. Selekabs Forhand. Bind 30, 1957, Nr. 24.

Jobes, F.W. (1952).-Age, growth and production of Yellow Perch in Lake Erie. Fish. Bull., U.S. Fish and Wildlife Service, Vol. 52, pp. 205-266.

Koura, R.A. and Bolook, A.R. (1958).-Age, Growth and Survival of Tilapia Mossambict (Peters) in Egyptian Ponds. Min. Agr. Egypt, Hydrobiological Department, Notes and Memoires No. 41.

Lea, E. (1938).-A modification of the formula for calculation of the Growth of Herring. Cons. Intern. Explor. Mer., Rapp. Proc. - Verb., CVIII.

Nikolsky, G.V. (1963).-The ecology of fishes. Academic Press, London and New York.
$V_{\text {an }}$ Oosten, J. (1953).-A modification in the technique of computing average lengths from the scale of fishes. Progr. Fish-Culturis, Vol. 15, No. 2, pp. 85-86.

