PHYTOPLANKTON DIVERSITY IN THE OLIGOTROPHIC WATERS WEST OF ALEXANDRIA (EGYPT)

RAMSES R. ADDALLA, YOUSSEF HALIN, WAGDY L. GERGIS AND F. N. ASSAD.

National Institute of Oceanography & Fisheries, Alexandria, *Faculty of Science, Alexandria University, Alexandria, Egypt.

ABSTRACT

The annual diversity cycle west of Alexandria (Egypt) is described using the Shannon-Weaver diversity index. A simple mathematical regression equation describing the dependence of diversity on species frequency variations for this area is given. The correlations between diversity and some physico-chemical parameters are also given. Diversity index and species composition confirm the presence of a longshore westward surface current in the area.

INTRODUCTION

1

Diversity is a property of communities, including both the number of species and the distribution of individuals between them, Ideally, an index of diversity will vary from beminimum, when all the individuals present in a community a long to a single species, to a maximum when each befividual belongs to a different species. The work of indiangton (1984) is a full review of diversity and Wash arity indices in aquatic ecosystems. It is assumed by simil authors that ecological diversity increases from the many to the tropics, (Fisher, 1960, Sanders, 1968). poles of (1958) explained this latitudinal gradient by this Margalation of temperate and polar communities as immature concept of succession arrested by suboptimal climate. stages by in the opinion of many workers, should increase Diversituccession. However, Margalef (1958 and 1978) with sed that diversity may both increase during succession and dec/

/ has often been suggested that diversity could be It ated with particular environmental factors, such as Correl/ depth, temperature, dissolved phosphate and nitrate water issolved pollutants in sea water, (Basson et al, 1976, and drey, 1978 and Cosser, 1988). Extensive field tests of Godf/ious diversity indices have been carried out by Margalef, var 965) and Travers (1967), in the Mediterranean. The (1 cresent study is concerned with the annual cycle of P) phytoplankton species diversity and its correlation with some physico-chemical environmental factors along the Egyptian Mediterranean coast west of Alexandria from El-Mex to Mersa Matrouh.

MATERIAL AND METHODS

The investigated area extends along the Egyptian Mediterranean coast west of Alexandria for about 230 km., between El-Mex Bay (Lat. 29° 50' E) and Mersa Matrouh (Lat. 27° 10' E) (Fig. 1). This area receives no runoff water except for El-Mex Bay. In this Bay a hydraulic pumping station pumps out about six million cubic meters per day of

Chart showing the investigated area and position of stations.

agricultural drainage water, contaminated with agroc and industrial wastes. The coastal area from El-Harhemical Marsa Matrouh is a desert; the only fresh water soummam to this area is either the rain water fall, specially urce to autumn and winter, or underground fresh water seepage during traverses perpendicular to the coast were selected to six the area, namely, El-Mex, El-Hammam, El-Alamain, El-Da cover Fouka, and Marsa Matrouh (Fig. 1). Each traverse include baa, or 4 sampling stations depending upon the width of ted 3 continental shelf. Six cruises were carried out durinche January. February, April, May, July and October 1977. Onegg litre of sea water was collected from the standard depths ' (surface, 10, 20, 30, 50 and 100 m.) and vertical hauls were also made using a phytoplankton fine net (50 u). Samples were preserved in 4 * neutral formalin. After complete sedimentation, the volumetric samples were reduced to 25 ml by slow siphonation and 2 ml of the sample transferred to a counting cell. The phytoplankton species were identified and counted separately using a research microscope and the results expressed as number of cells per liter. The Shannon and Weaver (1963) diversity index was used to compute the species diversity according to the following equation:

$$D = -\sum_{i=1}^{n} Pi \quad \log Pi$$

Where Pi = n/N is the proportion of i, the (ni) species to the total number of phytoplankton cells (N).

RESULTS AND DISCUSSION

I. The flora:

During this study 204 taxa were identified. In table 1, the number of taxa (m), the standing crop (S) cell/l and diversity (D) for the whole column at the different stations are given. The dominant species and their relative frequency are given in table 2. The diatoms were represented by 127 species and contributed 94 % to the numerical standing crop. Their dominance was higher at El-Mex (99 %) and less pronounced at El-Hammam (90 %). Dinoflagellates comprised 69 species and varieties and contributed 5 % by number to the standing crop. The genera, Ceratium and Protoperidinium were the most common. Silicoflagellata, Chlorophyta and Cyanophyta were very rare, together contributing not more than 1 % to the standing crop.

II. Annual diversity cycle:

A reversa relationship between diversity and relative (percent) frequency appears clearly in January. The population was generally richer in species offshore, fluctuating between 26 and 33 species, and poorer inshore particularly at El-Alamain (19-20), Diversity at El-Mex and El-Alamain was higher inshore than offshore. At both Fouka and Marsa-Matrouh, higher diversity is obtained at St. II decreasing inshore and offshore. Although the number of species was nearly unchanged inshore and offshore at El-Max, a relatively higher diversity is encountered at St. I. resulting from a lower degree of dominance of the dominant species Cyclotella kutzingiana (71 %). The large number of species and high standing crop observed offshore west of El-Mex are associated with lower diversity, since Cyclotella kutzingiana was the only significant species (table 2).

A higher diversity is observed in February along the whole area, except for St. I at El-Mex and St. II at Marsa

Table (1)

Diversity (D), standing crop, cell/l (S) and number of species (m) in the column at the respective stations.

Station and	St. 1			St. 11		St. 111			St. IV			
Month	m	D	8		D	8	-	D	8	m	D	8
A. January												
El-Mex	31	0.60	7500	34	0.49	8430	32	0.41	5120	33	0.48	4570
El-Alamain	20	0.59	4740	19	0.28	3780	29	0.30	5100	26	0.26	5030
Foukah	25	0.37	6680	32	0.45	4700	32	0.30	6950			
M. Matrouh	25	0.54	7600	29	0.58	4020	31	0.39	7520			
B. February						,				ŕ ·.		
El-Mex	32	0.42	322530	34	0.59	165610	40	88.0	35640	40 ·	0.76	11920
El-Hammam	21	0.78	2840	26	0.76	2810	27	0.81	5500	21	0.70	1720
El-Alamain	32	0.94	3320	17	0.81	1360	49	1.42	6420	46	1.37	5830
Foukah	14	0.49	3180	19	0.63	2345	23	0.70	2185			
M. Matrouh	23	0.75	3815	16	0.43	3465	28	0.56	5944			
C. April												
El-Mex	29	0.69	198600	19	0.80	· 1390	35	0.79	1500	26	0.82	1150
El-Hammam	14	1.03	780	19	0.64	1485	15	0.53	1075	- 21	0.57	1230
El-Alamain	22	0.55	2700	20	0.63	1850	19	0.38	2570	19	0.57	2825
El-Dabaa	16	0.72	1365	.19	0.88	610	15	0.65	540			
Foukah	28	0.62	3400	39	0.96	5665	25	0.51	1940		•	
M. Matrouh	13	0.80	815	17	0.74	850	23	0.77	1765			
D. May												
El-Mex	34	0.87	101540	18	1.09	1020	18	1.00	870	26	1.00	1460
El-Hammam	19	0.99	7300	20	0.95	4610	17	0.89	2175	23	0.76	10 20
El-Alamain	8	0.66	550	11	0.64	680	15	0.79	510	16	0.57	325
El-Dabaa	21	0.70	2220	34	0.84	4455	15	0.94	355			
Foukah	17	0.83	1015	17	0.79	965	21	0.89	545			
M. Matrouh	10	0.86	375	12	0.90	355	15	0.84	375			
E. July												
El-Mex	34	0.17	31780	36	1.15	1010	13	0.84	325	20	1.14	135
El-Nammam	17	0.99	445	54	1.51	2570	24	1.11	340	26	1.21	220
El-Alamain	18	1.05	385	20	0.97	370	20	1.06	360	19	0.92	180
El-Dabaa	25	1.25	425	29	1.17	260	24	1.13	160			
Foukah	25	1.29.	245	20	1.07	230	32	1.37	200			
M. Matrouh	25	1.06	440	22	1.02	405	24	0.79	400			
F. October												
El-Mex	42	0.90	23470	34	1.09	6435	54	1.00	14305	53	1.07	6046
El-Hammam	40	0.59	121960	47	0.50	120160	42	0.71	6475	39	0.51	33937
FI-Alamain	22	1.26	335	20	1.13	380	40	1.34	575	35	1.28	433
FI-Dahaa	25	1 30	290	27	1,19	290	26	1.26	290			
Foukah	27	1.24	300	23	1.17	180	36	1.37	280			
			200									

Matrouh. In the case of El-Mex a sharp increase in the standing crop compared with that of January was associated with the dominance of Skeletonema costatum (77 %), while in Marsa Matrouh the standing crop was less than in January with the dominance of C. kutzingiana (77 %).

The relatively higher diversity at St. III of El-Hammam indicates that dominance was not restricted to a limited number of species. The diversity has markedly increased at El-Alamain, particularly offshore, dominance being shared by several species (Navicula abrupta, Synedra affinis and Striatella interrupta). The number of species and the standing crop have decreased at Fouka below those of January, yet diversity is increased as a result of the lower degree of dominance of C. kutzingiana At Marsa Matrouh, this species contributed 77 % at St. II and hence the diversity is lower than at the other stations (tables 1 & 2).

In April, the standing crop is contributed by several species at St. I of El-Mex, resulting in a lower diversity. The degree of dominance was minimal at El-Hammam St.I and so diversity reaches a maximum (1.03)., El-Alamain was marked by a general diversity decrease. This low diversity is associated with dominance by one spoecies, again C. kutzingiana. The relatively higher diversity obtained at St. II of both El-Dabaa and Fouka and St. I of Marsa Matroun indicates that several species share the dominance with C. kutzingiana (Melosira crucipunctata and Navicula spp.).

By May, a general rise in diversity associated with the increased importance of several species is recorded. Such an increase is clear at El-Mex and El-Hammam. The relatively lower diversity at El-Alamain indicates that dominance was restricted to a smaller number of species, (Melosira crucipunctata, Leptocylindrus danicus and Chaetoceros didymus). Skeletonema costatum was dominant at St. I and II of El-Dabaa, associated with relatively lower diversities than in April. The relatively higher diversity at St. II, Marsa Matrouh, reflects the absence of dominance (table 2).

In July, diversity drops to its minimum at St. I, El-Mex, where Skeletonema costatum became much more important (93 %) than the other species. An abrupt increase in diversity is observed both inshore and offshore and towards the west along the whole area. Such increased diversity reflects the absence of a distinct dominance for any particular species. The maximum diversity is obtained at St. II El-Hammam (1.51), where the corresponding number of species increased and the standing crop was highest. At Marsa Matrouh a relatively lower diversity is encountered offshore where Melosira crucipunctata and Lauderia danicus were dominant (table 2).

Table (2)

÷

Dominant species and their relative frequency for the whole coulmn at the respective stations.

			Inshore		
Sect and	ion	st. 1		St. 11	
Month	• _ • • • •	D. Sp.	x	D. Sp.	X
× A. J.	anuary			المراجعة المراجعة المراجعة (Construction of the second second second second second second second second second	
El-Me	ex .	Cyclotella kutzingiana	71	Cyclotella kutzingiana	78
EL-AI	amain	Cyclotella kutzingiana	67	Cyclotella kutzingiana	85
Fouke	sh	Cyclotella kutzingiana	80	Cyclotella kutzingiana	77
M. Ma	atrouh	Cyclotella kutzingiana	62	Cyclotella kutzingiana	73
B. Fe	bruary				
El-Me	ex.	Skeletonema costatum	77	Skeletonema costatum	68
El-Ha	mam	Cyclotella kutzingiana	55	Cyclotella kutzingiana	53
EL-A	amain	Bellarochea malleus	46	Cyclotella kutzingiana	40
Fouka	h	Cyclotella kutzingiana	61	Cyclotella kutzingiana	59
M. Ma	atrouh	Cyclotella kutzingiana	72	Cyclotella kutzingiana	77
C. A	oril				
El-Me	ex.	Lauderia borealis	52	Cyclotella kutzingiana	60
El-Ha	menme	Cyclotella kutzingiana	19	Cyclotella kutzingiana	67
EL-A	lamain	Cyclotella kutzingiana	74	Cyclotella kutzingiana	70
El-Da	abaa	Cyclotella kutzingiana	58	Cyclotella kutzingiana	44
Fouk	ah	Cyclotella kutzingiana	72	Cyclotella kutzingiana	44
м. М	atrouh	Cyclotella kutzingiana	48	Cyciotella kutzingiana	50
D. K	вy				
EL-M	ex	Chaetoceros affinis	29	Chaetoceros affinis	15
El-H	man	Chaetoceros 🛿 finis	24	Chaetoceros didymus	25
EL-A	lamain	Melosira crucipunctata	43	Leptocylindrus danicus	51
El-Da	abaa	Skeletonema costatum	64	Skeletonema costatum	40
Fouka	ah	Melosira crucipunctata	46	Leptocylindrus danicus	48
M. Ma	atrouh	Melosira crucipunctata	38	Cyclotella kutzingiana	12
E. J	uly				
EL-M	ex	Skeletonema costatum	95	Skeletonema costatum	34
EL-H	aman	Melosira crucipunctata	44	Ceratium longirostrum	10
EL-A	lamain	Lyclotella menegniniana	s 33	Metostra crucipunctata	3/
EL-0	90 88	Leptocylindrus danicus	~~~	Leptocylindrus danicus	20
M. M	an atrouh	Leptocylindrus danicus	36	Leptocylindrus danicus Leptocylindrus danicus	29 50
F. 0 El-M	CTODEC ex	Asterionella japonica	50	Asterionella japonica	33
) ет-н	ammam	Asterionella japonica	75	Asterionella japonica	71
EL-A	lamain	Leptocylindrus danicus	12	Melosira crucipunctata	20
El-D	abaa	Asterionella japonica	13	Asterionella japonica	22
Fouk	ah	Rhizosolenia calcar-av	i 13	Leptocylindrus danicus	18
н. н	atrouh	Bacteriastrum elongatur	n 38	Chaetoceros affinis	45
				······································	

,

78

_____ ~ _ _ _ .

X

79

89

57

47

14

9

Offshore

.

.

St. IV St. 111 D. Sp. x D. Sp. Cyclotella kutzingiana Cyclotella kutzingiana 81 Cyclotella kutzingiana Cyclotella kutzingiana 85 Cyclotella kutzingiana 85 Cyclotella kutzingiana 82 Cyclotella kutzingiana Skeletonema costatum 32 Chaetoceros affinis 35 Chaetoceros affinis Navicula abrupta Chaetoceros affinis 16 Cyclotella kutzingiana Pinnularia trevelyana 44 Evelotelle kutzingi ...

Cyclotella kutzingiana	00		
Cyclotella kutzingiana	60	Cyclotella kutzingiana	51
Cyclotella kutzingiana	72	Cyclotella kutzingiana	72
Cyclotella kutzingiana	82	Cyclotella kutzingiana	77
Cyclotella kutzingiana	62		
Cyclotella kutzingiana	76		
Cyclotella kutzingiana	55		
Cyclotella kutzingiana	22	Chaetoceros affinis	22
Leptocylindrus danicus	37	Leptocylindrus danicus	57
Chaetoceros didymus	25	Melosira crucipunctata	45
Leptocylindrus danicus	37		
Leptocylindrus danicus	50		
Melosira crucipunctata	48		
Melosira crucipunctata	34	Melosira crucipunctata	16
Melosira crucipunctata	24	Melosira crucipunctata	17
Melosira crucipunctata	24	Melosira crucipunctata	34
Leptocylindrus danicus	31		
Melosira crucipunctata	32		
Melosira crucipunctata	52		
Asterionella japonica	30	Asterionella japonica	35
Asterionella japonica	64	Asterionella japonica	75
Chaetoceros affinis	12	Skeletonema costatum	21
Asterionella japonica	16		
Chaetoceros affinis	15		
Leptocylindrus danicus	9		

79

*2

In October, a sharp decline in diversity is obtained at El-Hammam, associated with the dominance of Asterionella japonica (64-75 %). Diversity rises again both in east and west indicating that several species maintain some degree of importance (table 2). The low diversity at Al-Hammam during autumn, confirms the suggestion of Gergis (1979), (based on temperature and salinity data), that at this time of the year this area was affected by continental runoff, either as a result of westward transport of El-Mex fresh water or possibly from underground water. Comparing species relative frequency for El-Mex and El-Hammam (table 2), it is clear that the neritic estuarine diatom Asterionella japonica became dominant in both areas. Eastward from El-Mex, at Abu-Qir Bay and Rosetta estuary, (Anon, 1979), the species was also recorded but in very small numbers at this time. In the mean time, the species was absent from El-Alamain to Marsa Matrouh. This may confirm the idea that the continental runoff which affected El-Hammam, derives from El-Mex. The diatom A. japonica florished in El-Mex at first and water mass was moved by a westward wind drift current to El-Hammam where it attained its maximum growth.

III- Diversity-frequency relationship:

It appears from the present study that the Shannon Weaver diversity index reflects a inverse relationship to the degree of dominance or relative frequency (%) rather than to the number of species contributing to the standing crop. This conclusion holds for the whole area throughout the year. Figure 2 represents the relationship between diversity (D) and the degree of dominance (F %). The simple regression equation describing this dependence is as follows: ð

D = 1.398 - 0.012 F

For example at El-Hamman, inshore St. I, the maximum cell density (122.000 cell/l) and the greatest number of species (40) recorded in October were accompanied by a low diversity (0.59), while in July diversity rose to a maximum (0.9) although the cell density (445 cell/l) and number of species (17) were low. In the first case Asterionella japonica was dominant (75 %), whereas dominance was shared by several species in the second case.

IV- Diversity and habitat structure relationship:

The number of species occurring in a particular phytoplankton community depends on the interaction between ecological, biogeographic and evolutionary processes (Margalef, 1978 and Hallegraeff and Reid 1986). The availability of resources is one of the most important ecological factors affecting species diversity. This effect was emphasized by numerous workers who have reported

Regression analysis of diversity (D) on dominancy (F).

Regression Analysia - Linear model: Y = a+bX									
Dependent	veriable: DIVERSI	TY	Independent variable: DOMINM						
Parameter	Estimate	Standard Error	T Value	Pro	ob. vel				
Intercept Slope	1.39815 -0.0120475	0.0243905 4.6846E-4	57.3234 -25.7173	. 00 . 00	000				

Analysis of Variance								
Source Model Error	Sum of	Squares 6.50303 1.46564	Df 1 114	Mean Square 8.50303 :01286	F-Ratio 661.3811	Prob. Level .00000		
Total (Corr.)		9.96867	115	·				

Correlation Coefficient = -0.923367 R-squared = 85.30 percent Stnd. Error of Est. = 0.113386

correlations between species diversity and some aspects of habitat structure, (Mac-Arthur, 1964, Borowitzka, 1972, Basson, et al 1976, Fogg 1978, Margalef, 1978 and Cusser, 1988). In the present case, according to the data of Anon (1979), Assad (1981), and Emara, et al (1984), the area west of Alexandria, except for El-Mex Bay, is characterized by a very low nutrient concentration. The average phosphate content did not exceed 0.05 ug at/1, nitrite 0.03 ug at/1 and nitrate 0.15 ug at/1. Silicate concentration showed wide variations (0.0-6.42 ug at/1). These concentrations are low compared with other areas along the Egyptian Mediterranean coast. El-Mex area represents a special case, as it receives a huge amount of waste water rich in nitrogen, phosphorus, silicon and other microelements, that creates eutrophication at times particularly in summer. The correlation coefficient of diversity versus some physico-chemical parameters are given in table 3. Looking at the whole area except for El-Mex Bay, one can conclude that temperature as it is generally supposed, has a positive on phytoplankton diversity. Salinity is also effect supposed to have a positive correlation, but its effect was significant only at El-Alamain and El-Dabaa. The insignificant correlation coefficients for Fouka, Marsa Matrouh and El-Hammam sections can be attributed to the fact that the first two sections receive more or less moderate quantities of rain water specially during autumn and winter seasons, while El-Hammam section is affected by the westward low salinity surface current originating from El-Mex Bay. nutrients relationships, nitrate Concerning diversity

Table (3)

Correlation coefficients between diversity and some physico-chemical variables.

Vari a bl e s	Section									
	El- Mex	El- Hammann	El- Alamain	El- Dab aa	Foukah	M. Matrouh				
Temp.	0.174	0.455**	0.356	0.462**	0.614**	0.351**				
Salinity	-0.027	0.123	0.298**	0.422**	0.014	0.025				
P0,	-0.228	-0.116	0.040	0.019	-0.109	0.109				
NOZ	0.066	0.234	0.045	0.232**	0.238	-0.058				
รเ๋ือ	0.257	0.129	0.028		0.171	0.182				
Fe	0.345 **									
Cu	-0.233									

" Significant at 1 % level

Significant at 5 % level

concentration showed a positive correlation at El-Hammam, El-Dabaa and Fouka, indicating a limiting effect on both phytoplankton standing crop and niche width at these areas. Phosphorus and silicon showed insignificant effect on phytoplankton species diversity. From table 3 one can characterize El-Mex area by a negative correlation of diversity versus phosphrous and copper. The effect of phosphorus is related to its role in the eutrophication phenomenon in the area at times throughout the year. The copper negative effect can be referred to its toxic effect. Moreover, diversity in El-Mex Bay was positively correlated with both iron and silicon concentrations, which reflects their limiting effect on phytoplankton growth and niche width in the Bay.

On the basis of the present data, we conclude that Shannon-Weaver diversity index should be interpreted in terms of resources abundance and abiotic habitat structure in addition to ommunity structure.

ACKNOWLEDGEMENT

We wish to thank Dr. Fekry Assad and Dr. Ibrahim Meiza for providing us with the basic data for calculations given in table (3), completion of the present work.

REFERENCES

- Annon., 1979. Fisheries investigations of the sardin and other pelagic fish along the Egyptian Mediterranean coast from Rashid to El-Sallum. Technical report No. (2/1) 75 pp and (2/2) to pp. Academy of Scientific Research and Technology. Institute of Oceanography and Fisheries.
- Assad, F.N., 1981. Chemistry of sea water west of Alexandria. M.Sc. Thesis Faculty of Science. Alexandria University. 91 pp.
- Basson, P.W., Hardy, J.T. and Lakkis, V., 1976. Ecology of marine macroalgae in relation to pollution along the coast of Lebanon. Act. Adriatica vol. XVIII No. 19: 307-325.
- Borowitzka, M.A., 1972. Intertidal algal species diversity and the effect of pollution. Aust. J. Mar. Fresh wat. Res. 23, 73-84.
- Cosser, R., 1988. Macroinvertebrate community structure and chemistry of an organically polluted Creek in the South east Queenland. Augst. J. Mar. Fresh Wat. Res. 39, 671-683.
- Emara, H.I., Iskander, M.F. and Assad, F.N., 1984. Chemistry of sea water of Alexandria. Bull. Inst. Ocean and Fish ARE., 10, 35-49.
- Fisher, A.G., 1960. Latitudinal variation in organic diversity. Evaluation 14, 64-81.

- Fogg, G.E., 1978. Phytoplankton primary production, In Fundamentals of Aquatic ecosystems. Ed. R.S.K. Barens & K.A. Mann, Blackwell Scietific Publication. Oxford, London, Edinburgh, Boston.
- Gergis, M.A., 1979. The hydrographic chracteristics and surface circulation of the Mediterranean coastal waters from Matrouh to Rosetta. (In Anon 1979).
- Godfrey, P.J., 1978. Diversity as a measure of benthic macroinvertebrate community response to water pollution. Hydrobiologia, 57, 111-122.
- Hallergraeff, G.N. and Reid, D.D., 1986. Phytoplankton species successions and their hydrological environments at a coastal station off Sydney. Aust. J. Mar. and Fresh Wat. Res., 37, 361-377.
- Mac-Arthur, R.H., 1964. Environmental factors affecting bird species diversity. Ann, Nat. 98, 387-398.
- Margalef, D.R., 1958. Temperal succession and spatial heterogeneity in phytoplankton. Percepectives in Marine Biology. Ed. C.H. Goldman. University of California press, Berkely. 323-349.
- Margalef, D.R., 1965. Ecological correlation and the relationship between primary productivity in aquatic environments. Ed. C.H. Goldman. University of California Press, Berkely. Mem, 1st. Ital. Idrobial, 18, 355-364.
- Margalef, D.R., 1978. Life forms of phytoplankton as survival alternatives in an suitable environment. Oceanol. Acta. 1, 493-502.
- Sanders, H.L., 1968. Marine benthic diversity, a comparative study. Amer. Nat. 102, 243-282.
- Shannon, G.E. and Weavers, W., 1963. The mathematical theory of communication. University of Illinois Press, Urban pp 125.
- Travers, M., 1971. Diversite du microplancton du Golf de Marseille en 1964. Mar. Biol., 8, 308-343.
- Washington, H.G., 1984. Diversity, biotic and similarity indices, A review with special relevance to aquatic ecosystems. Water Res. 18, 653-694.

in se