ON THE FOOD AND FEEDING HABITS OF MUGIL CAPITO (CUV.) IN LAKE QUARUN.

S.S. EL-SERAFY; A.S. AL-ZAHABY; AND M.A. SWEILUM.
Department of Zoclogy, University of Zagazig.
* Institute of Oceanography and Fisheries.

Abstract

Food and feeding habits were studied at three different localities in lake quarme. it was found that the feeding rate of N . capito is fond avallability dependence reiated to the favourable ocological conditions. The nature of the bottom's Lake has a role in the feeding habit of the fish.

Small size of R. capito tends to feed exclusively on plant organisnis, mainly chrysophyta, chlorophyta and cyanophyta. As the fish grows up to certain stze the diet becomes mixed of phytoplankton, zooplankton and detrital materials. The fish of largest size fced on animal organisms (Copepoda, Flagellata and Foraminifera), detritus and sand grains.

Analysis of stomach content was also examined seasonaly from sumner 1985 to Spring 1986. Feeding rate is lowest during autumn and winter due to the gonadil maturation and the drop of water temperature in this period.

INTRODUCTION

Mugil capito (CUV.) is a member of the family Muglidae and is commonly called grey mullet. Due to its potentiality as a cultivable species in the tropics, it has become an edible fish in Lake Quarun.

Studies of food and feeding of the Egyptian mullet (M. capito and \boldsymbol{H}. cephalus) collected from natural habitat were mentioned as early as $1 \$ 3$ (El-Chazzawi, 1933). Bishara (1967) studied the food and feeding habits of two species of Mugilidae at the Mex experimental ponds. Hamza (1974) studied the food and feeding habits of three species of Muglidae reared in Manzalah fish farm. However, the study on the food and feeding babits of Mugil species at different locatities of the world was reproted by different workers (Pillay, 1953; Luther, 1962; Yushouv and Benachar, 1970; De Silva and Wijeyaratne, 1971; Abdel Malek, 1980; Marias, 1980 Minckley, 1982; Matwoek and Garcia, 12as; Spatary of al., 1983; Drake et al., 1984 and Wells, 1884).
 fry trimsported to the betre from eartrtes of the Mediterranean Sea, these fry find a good feediag ground to grow in Lake Qarun. The mullet catch of Lake curam is mostly composed of M. capito where its annurel catch is 296. tons, which compries about 25% of the total catch in the year 4989/1986. Thus for the great economic importance of this fish, the prsent Imestigation is campied out. This study deals with the seasonal variations of the coad items af different stations for affferent size groups. Such studys may belp in ptantug and management the fisheries of M caplo in cake Qumab

MATERIAL AND METHODS

The material of the present study comprises a total number of 722 Mtugit capito of June 1983 to May. 1986 from three different stations: Sation I (Infront of El- Bats Drain) occupies most of the eastern part of the beke. the second station (Khor Maiuf) is nearly situated in the middle of the lakeand the thided station (El-Rawashdia) lies in Western part of the Lalte Eitic 1.

FIG. 1
Location of Lake Qarun.
 otinfet nets. Each fish was sexed and measured to the nearest mm in total length, then its weight was recarded to the nearest gm. The gut was removed pregerved in 5% formalin in a habeted jars for tater examination.

The contents of the alimentary canals were examined in the latoratory uising a research microscope. The different food items constltuting the platht and animal materials were identified and counted by Sedwick Rafter. counting cell (for counting phytaplankton) and Tray coumting cell (fop counting Zooplantons

The data obtatned were andysed numertcaly by the percentage compositionby rumber (Bishal et ad, 1974; Ezzat and EISeraly, 1877; thatll and Bowent 1978; Spataru et ad., 1920 and 1863).

Sampling was donte at monthly baterwels in the mid day fortixges. Data for every season were gerpuped togethep.

RESULTS AND DUSCUSSTOA

The obtanaed data for the present study are represented for seven grouth of fishes. These are; group 1 ranged from $96-135 \mathrm{~mm}$, group $2: 136-175$
 gnoup 6: 296-335 mou and group 7: $336-37 \mathrm{~mm}$.

The present observations confirm that Mugil capito is omnivorocis, eating bath animal and plant materials. The animal organisms recorded in the alimentary canals of M. capito were; Copepoda (Acartia sp. and nauplims larvae of Acaxtia sp.) Elagellata (Rcorocentrum sp.) Foraminifera (Globigerina
(Navicula sp., Gyrosigma sp., Mastoglia sp., Nitzschia sp., Coscincdiscus sp., Synedra sp., Thalassionema sp. and Amphora sp.) Chlorophyta (Enteromorpha sp. and Ankisterodesmus sp.), Cyanophyta (Oscillatoria sp.. Spirulina sp. and Lyngbya sp.) and plant detritus. In addition to the animal and plant materials the sand grains are also found in the guts of large sized fish.

The percentage composition of fond items is calculated and shown in Tables 1-4.

The results are based on the examination of about 180 gut contents in each season, it has been found that the percentage of empty alimentary canals are 8.8% in summer, 32.2% in autumn, 38.9% in winter and about 2.2% in spring.

On the other hand the percentage of empty guts was 19.9% in the first station, 10.8% in the second station and 32.0% in the third one respectively, from the number of fish examined which was about 240 fish in each station, during the investigation period. This means that the stomach fullness in station III is lower than that in stations I and II.

From the present data, it is clearly seen that the small size of mugil cap:io (group 1 and 2) tends to be exclusively of plant organisms, feed mainly on'Chrysophyta, Chlorophyta and Cyanophyta which composed an average of $40.8 \%, 26.9 \%$ and 7.6% respectively of the total food eaten. De Silva and Wijeyaratne (1977) analysed the stomach content of the young grey mullet collected from coastal lagoon in Srilanka and no'. ad that they feed mainly on chrysophyta, chlorophyta and cyenophyta. The same author idded that the chrysophyta represents more than half of the fish dict. AbdelMalek (1980) proved that the grey mullet, M. Saliens in Lake Quarn fed mainly on algae. Oren (1981) postulated that the fry of grey mullet (M. cephaius; in estuaries feed on algae and plant detritus. Minckley (1982) analysed the stomach content of 18 spp . Of fishes in the lower Colorado River southwestern USA and indicated that small size fishes of M. Cephalus feed on algae, detrital materials and macrophytes, while large fishes feed directly on detritus. Matloc and Garcia (1983) analysed the stomach content. of selected fishes from Texas USA bays and noticed that the stomachs of m. Cephalus contained plant materials only. The diet of the grey mullet in Lake Waahi and the Waikato River, "two highly productive freshwater habitats at Ifuntly New Zealand" is found to include a wider range of algal species, some macrophyte detritus and inorganic particles (Wells, 1984).

However, other workers belived that the animal organisms are more imper' . Cood items in small size fish of mullets. Luther (1962) observed that rit hy of M. cephalu: feed mainly on zonplankton. There is an indication that the postlarval M. cephalus i.- the water of Japan and Haifa Bay of Israel feed mainly on the microcrustacenns of zooplankton Zusuki, 1965 and Zisman et al., 1975). Kahan (1979) noticed that copepods were the

	1.	96.135	9	75.6	54.0	43.8	31.3	19.6	14.0	0.7	0.5	0.3	0.2	-	-					140.0
	2	13-175	11	81.8	51.8	47.4	30.0	20.4	13.0	+7	3.0	1.9	1.2	1.6	1.0					157.8
$=\frac{3}{3}$		$176-215$	8	151.9	49.0	89.9	29.0	35.3	11.7	12.1	3.9	8.1	2.6	5.0	1.6	5.6	1.8	1.2	0.4	310.1
	4.	$216-255$	9	143.5	33.7	110.5	26.3	40.7	9.7	29.4	7.0	18.9	4.5	10.5	2.5	33.6	9.0	34.9	8.3	420.0
管首		256029.5	11	134.4	29.0	72.0	15.0	31.2	6.5	57.6	12.0	38.4	8.0	33.6	7.0	60.0	12.5	52.8		480.0
$\underline{\sim}$	6	$296-335$	6	96.3	15.6	48.9	8.6	23.2	4.0	82.4	14.2	53.4	9.2				.			
	1.	336-375	6	73.6	11.5	22.4	3.5	9.6	1.5	118.4	18.5	63.9	10.0	57.6	9.0	134.4	21.0	10.0	29.0	631.8

Number in thousands and percentage comp sition of vartous food items in guts

 Quarun during winter 1986.
84
TABLE 4
Number in thousands and percentage composition of various ffod items in guts ferent length groups from three stations in Lake
Quarun during spring 1986 .

most important natural food of young mullet (M. capito) collected from Mediterranean coast of lscael. Kraul (1983) stated that the juevenile grey mullet (M. cephalus) feed on cultured copepods. It appears, from the contrary of pervious opinions that the feeding rate of M . capito is food availability dependence.

As the fish increase in size (T.L. of 176 to 295) the diet is mixed and consists of phytoplankton, zooplankton, detritus and a few amounts of inorganic materials (sand grains). El-Ghazzawy (1933) analysed the stomach content of n. capito and in. cephalus collected from the natural hobitat in Egypt and he mentioned that the food mainly consiste of benthic diatoms, detritus materials, portionis of fresil water algae and microorganisms which fre eisn frequent. The tood of these two species ot Ney Canal and lake Borolius in Egypt was a mixume of distomis, detritus, algae and parts of animal organisms (Bishara, 1967 and El-Sedefy, 1971).

It is noticed that the fish of largest size (groups 6 and 7) tend to eat animal organisms, detriuts and sand grains with great amounts. Copepoday Flagellata and Foraminifera are the most important animal organisms which composed average of $18.0 \%, 11.0 \%$ and 9.0% of the diet respectively. The average percentage composition of detritus and sand grains are 20.8% and $\mathbf{2 5 . 7 \%}$ respectively. Luther (1962) observed that the adult and fingerlings of grey mullet species (M. cephalus) subsist mainly on decayed organic matter (detritus) and foraminifera supplemented by decaying plant and animal matter Odum (1968) reported that M. cephalus prefers very fine particles wherever sediments are involved in feeding. He suggested that the small inorganic and plant detrital sediment particles are richer than the coarser material that the mullet rejects. Hickling (1970) mentioned that mud particles and food fly into the mouth by strong reaction and after a few seconds a part of the soil is rejected from the mouth. The mullet as a whole is a grazer, feeding on living or dead organic materials (detritus) accumulated on the bottom of Lake Borollus (El-Maghraby et al., 1974). Zismann et al., (1975) found that copepods are the most important food in all sizes of grey mullet collected from Haifa Bay region in Israel. There is no sand grains on detritus in stomachs of grey mullet species under 25 mm long and the sand or detritus particles increased with length of the fish (De Silva and Wijeyratne, 1977).

From the work of Das and Chowdhury (1984) the stomach content of the grye mullet collected from the Matamuhury River estuary, Bangladish consists of diatoms, algae, copepods, sand grains and decayed organic matter (detritus) and the percentage of these items were $40.25 \%, 13.50 \%, 7.92 \%$, 26.58%. and 11.75%. These findings in general are in line with the present observations.

The present investigation suggests that the diet of M. capito (T.L. ranged from 96 to 375 mm) in the three sampling stations consists of chrysophyta, chlorophyta, cyanophyta, copepoda, flagellata, foraminifera, detritus and sand grains. In case of first station (In front of El- Bats Drain), the Dercentage composition of these food items are $\mathbf{3 0 . 2}, \mathbf{1 6 . 8 \%}, 8.5 \%, 11.6 \%$,
$\overline{7} .4 \%, 6.0 \%, 12 \overline{5} \%$ and 19.2% respectively. In second station (Khor Maiuf) these items composed $32.3 \%, 17.5 \%, 9.5 \%, 10.8 \%, 6.5 \%, 5.2 \%, 11.4 \%$ and 14.8% of the diet of the fish respectively. In third station (El-Rawashdia) the mean percentage composition are $27.4 \%, 15.8 \%, 7.0 \%, 13.0 \%, 7.8 \%$, 14.0% and 20.2% respectively.

It is, noticed that, the plant organisms (chrysophyta, chlorophyta and cyanophyta) in the gut of the fishes in Khor Maiut (Station II) are higher than in the other two stations (infront of El-Bats Drain and El-Rawashdia). This is attributed to the abundance of a great amount of phytoplankton organisms, total number about $564,250 \times 10^{3} / \mathrm{m}^{3}$ in spring months in the water of Khor Maiuf station as a result of the favourable ecological condition where the high oxygen content ($5.90 \mathrm{mg} / \mathrm{l}$), low salinity (29.29%) and pH value (7.4), great amount of total alkalinity ($360.85 \mathrm{mg} / \mathrm{l}$), optimum amount of phosphates ($1.05 \mathrm{mg} / 1$) and nitrates $(0.75 \mathrm{mg} / \mathrm{l})$, depth of water (2.36 m) and optimum transperancy (91.47 m) are recorded.

In addition, the higher water temperature of Khor Maiuf $\left(30.5^{\circ} \mathrm{C}\right.$ in summer) stimulates the development of chrysophta (diatoms) and other microorganisms needed as the basic food supply for the fry and young mullet species (Zambriborch, 1949).

However, the animal organisms (copepoda, flagellata and foraminifera), detritus and sand grains are highest in fish gut of El-Rawashdia station and lowest in'fish gut of Khor Maiur station. This may be attributed to the presence of high numbers of zooplankton organisms, total number 102,894 $/ \mathrm{m}^{3}$ in spring in the water of El-Rawashdia region.

It is also noticed that the sand grains are high in fish gu^{+}of station III than the other two stations. This is due to the nature of the bottom of the Lake' in this region. The nature of bottom is muddy in station 1 , muddy sand in station II and sandy-mud in station III.

The present data reveal that the stomach fullness in the third station is lower than that in the other two stations as its physico-chemical properties are the responsable for this. The high salinity, low oxygen content, low amounts of phosphates and nitrates elevation of pH value in the third station act to drop nourshment of phytoplankton organisms, and accordingly the feeding is less.

Analysis of stomach content of M. capito has also been studied seasonaly from summer 1985 to spring 1986. From the present data, it is noticed that M. capito feed mainly on plant maerials in summer months, while the animal materials, detritus and sand grains are consumed in winter months. Howe er, in autumn and spring the diet of the fish is mixed. This shows that 70 '. nkton consumption is less during summer months as the zooplt in s crop of the Lake is poor (avrrage number is $6567 / \mathrm{m}^{3}$). While the plyytoplankton utilization is greater during summer where the Lake is richer in phytoplankton population (averuge number is $117,750 \times 10^{3}$ / m^{3}).

It is also observed that the stomach fullness is highest in spring and summer, while it is lowest in autumn and winter. This may be attributed to low rate of feeding in autumn and winter, which is due to the fact that in this period the fish forms its gonads (El-Maghraby et al., 1974) and also due to low water temperature ($23.5^{\circ} \mathrm{C}$ in autumn and $16.9^{\circ} \mathrm{C}$ in winter). De Silva and Wijetratne (1977) found that the number of food organisms in stomachs of young grey mullet increased from April (spring) to maxima in June and August (summer).

It can be concluded that M. capito is omnivorous fish eating both plant and animal materials, the same trend was found by several authors (Naguib, 1961; Bishara, 1967; El-Sedafy, 1971; Albertini-Bernaut, 1974 and De Silva, 1980).

REFERENCES

Abdei-Malek, S.A., 1980. The food and feeding interrelationships of fish in Lake Qarun (Egypt). J. Ichth. . Vol. 20 (2): 62-66
Albertini-Berhaut, J., 1974. Blology of juventle stages of the teleosts Mugilidae - M. auratus Risse 1810, M. capito Cuvier 1929 and M. saliens Risso 1810. 2. Changes in the diet in relation to size. Aquaculture, Vol. 4 (1): 13-27.
Bishal. H.M.; S.A. Abdel-Malek and W. Labib 1973. Food and feeding habits of Cyprinus Carplo L. at Serow Fish Farm, Egypt. Eull. Inst. Oceanogr. and Fish., A.R.E. Vol. 3: 205-216.
Bishara, N.F., 1967. A study on the growth and feeding of two species of Mugil at the Nex Experimental Station. M. Sc. Thesis. Alexandria University., 116 p.

Das, N.G. and Z.A. Chowdhury, 1984. Food and feeding habits of 3 grey mullets from the Matamuhury River estuary Bangladesh. Chittagong Univ. Study. part II Sci.. Vol. 7 (2): 5768.
De Stlva, S.S., 1980. Biology of juvenile grey mullet, a short review. Aquaculture. Vol. 19 (1): 21-36.
De Silva. S.S. and M.J.S. Wijeyratn, 1977. Studies on the blology of young grey mullet, M. cephalus L. II Food and feeding. Aquaculture, Vol. 12: 157-167.
Drake, p.; A.M. Arias. and L. Gallego, 1984. Blology of mullets ostefchthyes Mugtlidae in the fish ponds of salt Marshes of SanFernando Cadiz, Spain, 3. Food habits and morphometry of almentary tract relattonships. Invest. Pesg., Vol. 48 (2): 337-367.
El-Ghazzawi, F.W., 1933. The pharynx and intestinal tract of the Egyptian Mullet (M. cephalus and M. capito). Part I-On the food of mullet. Notes and Nemoires, No. 5. Fish. Res. Egypt.
El-Maghraby, A.M., 1974. Sexual maturity, spawning migration and fecundity of Mugil capito in Lake Borollus. Bull. Inst. Oceanogr. and Fish. A.R.E., Vol. 4: 3356.

El-Sedefy, H.M.H., 1971. A biological study of the mullet fishery in Lake Borollus. M.Sc. Thesis, University of Alexandria, 165 p .

Ezzat. A.A. and S.S. El-Serafy 1977. Food of Anguilla anguilla in Lake Manzalah, Egypt. J. Marine Biology, Vol. 41: 287-291.

Hamza, A.K., 1973. Experimental studies on rearing mugilidae in Egyptain fish farm. M. Sc. Thesis, Cairo University, 173 p.

Hickling, C.E., 1970. A contribution to the natural history of the English grey mullet (Pisces, Mugilidae). J. Mar. Biol. Assoc. U.K., Vol. 50: 609-633.
Kahan, D., 1979. Food organisms for rearing fry of mullet. Eifac Technical paper. No. 35: 18-193.
Kraut, S., 1983. Results and hypotheses for the propagation of the grey mullet, Mugil cephalus L. Aguaculture, Vol. 30 (1/4); 273284.
Luther, G., 1962. The food habits of Liza macrolepis (Smith) and :tugil cephalus (Mugilldae). Ind. J. Fish., Vol. 9: 604-626.
Marals, J.F.K., 1980. Aspecis of food intake, foci selection and almentary caral
 (Smith) and 1. dumerill (Stoin)., j. Exper. Har. Blot. aml [cal, Vol, a4: 193206.

Matlock, G.C. and M.A. Garcia, 1983. Stomach contents of selected fishes froin Texas USA Bays. Contrib. Mar.Sci., Vol. 26:95-111.
Minokloy, W.L., 1982. Trophic interrelations among introduced fishes in the lower Colorado River southwestern USA Calif. Fish Game, Vol. 68 (2): 78-89.
Nagiub, M., 1961. Studies on the Ecology of Lake Qarun (Fayoum Egypt), Part II. Kieler Meeresforschungen. Instiutut for Meeres kunde der Universitat kiet. Band KYIII.
Odum, W.E., 1968. The ecological significance of fine particle selection by the striped mullet, M. cephalus. Limnol Oceanogr., Vol. 13: 92-98.
Oren, O.H., 1981. Aquaculture of grey mullets. Cambridge. UK Cambridge University Press, XXI: 507p.
Plllay, ,T.V.R., 1953. Studies on the food, feeding habits and alimentary tract of the grey millet, Mugil tade forskel. Proc. Nat. Inst. Sci. India, Vol. 19: 777-827.
Spataru, P.: B. Hepher. and A. Halevy, 1980. The effect of the method supplementary feed application on the feeding hapits of carp (Cyprinus carpio L.) with regard to natral food in ponds. Hydrobiologia, Vol. 72: 171-178.
Spataru, P; W.K. Gior and H. Gideon, 1983. Studies on the natural food of different fish species in intensively manured polyculture ponds. Aquaculture, Vol. 35: 283-298.
Suzuki, K. 1965. Biology of striped mullet, N. cephalus L. I. Food content of young. Rep. Fact. Prefect Yaiv. Hie., Vol. 5: 295-305.
Hells, R.D.S., 1984. The food of the grey mullet M. cephalus in Lake Waahi and the waikato River at Huntly New Zealand. N. Z. J. Mar. Freshmater Res., Vol. 18 (1): 13-20.
Widnell, J.T. and S.H. Bowen, 1978. Methods for study of fish diet based on analysis of stomach content and methods for assessmant of fish production in fresh waters. Editor, T. BAGENAL. Blackwell Scientific publications, Third Edition.
Yashouv, A. and A. Ben-Shachar, 1970. Breeding and growth of Mugilidae. 11. Feeding experiment under laboratory conditions with M. cephalus L. and M. capito. Cuv. Bami 'moh, Vol. 19: 50-66.
Zambr'm. . F.S., 1949. Time of appearance of young mullets, their species, at the coast of southwest parts of Black Sea, Reports of Odessa State University, Vol. 5 (57):75-78.
Zismann, L.; V. Berdugo and B. Kimor, 1975. The food and feeding habits of early stages of grey mullet in the Haifa Bay region. Aquaculture, Vol. 6: 59-75.

