ON THE BIOLOGY OF LUTJANUS LINEOLATUS (BLOCH) IN THE GULF OF SUEZ: LENGTH- WEIGHT RELATIONSHIP, RELATIVE CONDITION FACTOR AND FECUNDITY.

S.S. EL-SERAFY, A.S. AL-ZAHABY AND M.A. EL-DARAWANI. Faculty of Science, University of Zagazic.

Abstract

The regression coefficient "b" in the formula $H=a^{\text {b }}$ for Lutjanus Ifneolatus collected from Ataka, near Suez was found to be 2.8852. This value was statistically analysed and the fish showed isometric growth. The relative condftion factor at different lengths distinctly decreased at the end of the first, second, thrid and fourth years of life for both sexes. Fecundity was fluctuated between 4873 - 27644 ripening eggs for the range of total length 107 - 177 mm . It was found that the absolute fecundity is the better expression than the relative one. The fecundity length relationship was found to be more correlated where it is best described by the equation: $\log F=-2.742+3.2 \mid 4 \log L \quad(r=0.984)$.

INTROLUCTION

The bigeye snapper Lutjanus lineolatus (Bloch.) is of considerable importance in the trawl catches of the Gulf of Suez. In the recent years the annual trawl catches from the gulf of Suez were about 5300 tonne, of which L. lineolatus represented $10-20 \%$. Information on the biology of different species of Lutjanidae has been given by several authors in different localities. Among them, Armira and Bashirullah (1975), Harry (1977), Manooch and Mason (1984), Edward (1985) and Mason and Manooch (1986) may be mentioned.

However, very little work has been done on the biology of L. lineolatus In the Gulf of Suez. El-Serafy et al. (1987) studied its age and growth. On the other hand, the maturity and spawning were reported by Al-Zahaby et al. (1987). This paper presents information on length-weight relationship, relative condition factor and fecundity which may be helpful in the management of L. lineolaturs fisheries in the Gulf of Suez.

MATERIAL AND METHODS

A total number of 455 specimens of Lutjanus lineolatus was collected from commercial landings at Ataka, near Suez during January to December 1985. The determination of length-weight relationshlp based on the combination of the data regardless of date of capture and stage of maturity.

Since the regression coefficient for the two sexes did not show significant differences (Table 1), the general relationship between weight and length for the combined sexes of L. lineolatus (Fig. 1) has been calculated as:
$\log W=-4.6802+2.8852 \log L$.
table 1
Mean observed, calculated weighted and relative condition factor (Kn_{n}) per group of lengths for male and female Lutjanus IImeolatus.

"Range of totalial length (π (min)	Mean observedied wel ght ${ }^{\text {ght }}$ ($\mathrm{gm} \mathrm{m}_{\mathrm{s}}$)	H A LE Calculated welght (gm)	Relativa condition factorio: (kn)	No, of fifinsh exant-	Mean observedirad welght (om.)	```F calculated weight (gm)```	E M A L Relative condition factor (kn.)	E Mo. of Pish examined
100-104	13.23	13.01	1.008	1	13.64	13.10	1.041	4
105-109	13.71	14.94	0.913	1	14.13	15.04	0.940	4
110-114	17.86	17.03	1.044	10	18.24	27.14	1.058	12
115-119	19.97	19.32	1.032	46	20.85	19.43	1.073	16
120-124	22.85	21.79	1.049	36	21.73	21.92	0.991	36
125-129	24.33	24.46	0.997	29	24.05	24.60	0.978	31
130-134	28.73	27.33	1.055	24	27.35	27.48	0.995	28
135-139	29.72	30.42	0.982	22	29.18	30.58	0.954	25
140-144	32.77	33.73	0.979	24	32.25	33.90	0.951	21
145-149	35.65	37.26	0.966	40	34.84	37.44	0.931	16
150-154	39.74	41.02	0.979	6	41.36	41.22	1.003	12
155-159	41.60	45.03	0.935	3	43.90	45.23	0.971	8
160-164	49.06	49.28	1.009	1	40.50	49.49	1.018	8
165-169	45.62	53.78	1.031	3	56.88	54.01	1.048	3
170-174	63.42	58.55	1.101	3	61.44	58.79	1.045	5
175-179	64.38	63.58	1.031	3	84.93	63.83	1.017	5

The samples were grouped into sixteen length groups $\mathbf{~} 0.5 \mathrm{~mm}$. interval) and the mean corresponding weight for each length group was computed. The length-weight relationship was calculated by the standard formula $W=$ a Lb (Beckman, 1948 and Le Cren, 1951) where $W=$ weight in grams, $L=$ total length in mm. and a \& b are constants. Using the least squares method, the coefficients a \& b are calcuated after linearization by taking logarithms of both sides of the equation.

The relative condition factor (K_{n}) can produce information on many interesting events in the life history of the fish. Le Cren (1951) recommended a study of K_{n} in preference to the pondral index K. The value of K_{n} is a physiological factor dependance as it is affected by maturity and spawning as well as the environmental factors like food availability (Brown, 1957 and Sinha, 1975). K_{n} was calculated from the formula: $K_{n}=W^{\circ} / W$ where W° is the observed weight and W is the weight caiculated using the lengthweight equation for the observed length of L. lineolatus.

For fecunditiy studies, 195 gravid females were collected just prior to the spawning season (April-May). The ripe ovaries (ripening eggs 0.71-0.80 mm . in its diameter) from each fish were carefully removed, weighed to the nearest gm and preserved in Gilson's fluid as recommended by Bagenal and Braum (1978). After two months of fixation, the preserved ovaries were washed by runing tap water. Then, filter paper was used to adsorb the excess water. The total weight of ova was recorded in grams. Four subsamples of one gram each were taken, and the ova present in each subsample was counted separately. The formula used for fecundity calculation is :

$$
\begin{gathered}
A F=W /\left[w_{1}+w_{2}+w_{3}+w_{4}\right] X\left(n_{1}+n_{2}+n_{3}+n_{4}\right) . \\
R F=A F / G W
\end{gathered}
$$

A F is the absolute fecundity, W is the weight of ovary, $W_{1}, W_{2}, W_{3} W_{4}$ are weights of subsamples, $n_{1}, n_{2}, n_{3}, n_{4}$ are the numbers of ova present in the subsamples, $R F$ is the relative fecundity and $G \mathbf{W}$ is the gutted of the fish in gram.

RESULTS AND DISCUSSION

It is known that the weight of fish inereases as a function of Its length. For many species, it has been found that weight increases as the cube of length, but for others, the weight increases at a great or less rate (Hile, 1948 and Le Cren, 1951). The analysis of length-weight relationship of Lutjanus lineolatus, which is based on the available data collected through 1985, showed a log-log linear fit with regression coefficient "b" differing from the cube for both sexes:-

$$
\begin{array}{ll}
\log W=-4.6513+2.8708 \log L \quad \text { for male fishes } \\
\text { and } \log W=-4.6912+2.8925 \log L \quad \text { for female fishes }
\end{array}
$$

The agreement between the observed and calculated weights was fairly good (Table 2). The value of the exponent " b " show that the weight of L. lineolatus increases to a power not significantly lesser than the cube of length (Table 3). Thus the body shape is unchanged as the fish grow in length, i.e. the fish grow isometrically. The regression coefficients of different species of the family Lutjanidae, at different localities, as determined by various authors, are shown in Table 4. It is clear from thi
table 2
Test of significance of equality of regression coeffictents

TABLE 3
Test of deviation of "b" value from " $3^{\prime \prime}$

Sex

Mon signtficant

TABLE 4
Ne regression coefficient "b" of length-weight relationship of the family Lutjanidae at different localities

Spectes	Locality	Author	Regression coefficient
Lutjanus griseus	Cubagua island	Arwira and Boshirullah	2.86
	Venzuela	(1975)	2.73
Lutjamus symagris	Southern Florida (L,S.A.)	Manooch and Mason (1984)	2.6524
Lutjanus Eelabaricus	Australian water	Edvards. (1985)	2.842
Pristipomold typers	Australian water	Edvards (1985)	2.822
Pristipenoid mitidens	Australlan water	Edwards (1985)	2.897
Lutjemes bohar	Tigak 1sland Mew eujnea	Wright et al. . (1986)	3.01
Lutjanes amalls	East coast of Florjda (U.S.A)	mason and Manooch (1986)	3.044
Lutjanus 11neolatus	Egyptian mater	Present Study	$\begin{aligned} & 2.8780 \\ & 2.8720 \end{aligned}$

table that the regression coelficient "b" of L. Hneointes in the Gull of Suez lies within the range 2.6524 - 3.044. The lower limft of that range was reported for L. synagris in Southern Florida (Manooch and Mason, 1984). However, the upper one was recorded for L. analis in east coast of Florida (Mason and Manooch, 1986).

The relative condition factor at different lengths showed a distinct decrease at the length ranges : 105-109 mm, 185-180 mm, 145-149 mm and 155-159 mm. for both sexes (Fis, 2). These ware found to correspond to the end of first, second, third, and fourth.years of Ufe. In I. Ineolatun at the Gulf of Suex, the checks mere formed once a year during the mpuwning season (El-Seraly ot al., 1987). Furthior, L. Hneciates spawnis once gear In April-May (Al-Zahaby et al., 1987. Thus, it can be concluded that the fall and rise in K_{n} values are more or less cyclic' In mature which might have reaulted from repeated spawning and recovery reapectively during the Hie hlatory of the fish.

The monthly variation of $\mathbf{K}_{\mathbf{n}}$ value as shown la Fig. 3 ranged between 0.047 In Jenuary and 1.127 in April. The highest value as recorded in Aprli colncided with the maximum value of the gonadosomatlc Index in the same month (Fig. 4); K_{n} decreased In May after the conmencemand of

FIG. 2
Relative condition factor of Male and female Lutjanus Ifneolatus (lengthwise).

FIG. 3
Monthly variation of gonadosomatic index of Lutjanus IIneolatus.

FIG. 4
Relative condition factor of Lutjanus IIneolatus (Monthwise)
the spawning and in the spent condition (June). Le Cren (1951) investfgated the K_{n} of Windermere Perch population and found that a massive and rapid loss in K_{n} at spring spawning in mature females when a large quantities of ova were released. Also a loss of condition of perch Perca fuviatilis followed release of ova and sperms in summer rather than spring and after spawning condition declined to its winte: low (Weatherley, 1959). Thus, it can be concluded that K_{n} of L. Tineolatus is affected by maturity and spawning activities.

The results of the fecundity showed a variation according to the size of the fish, being 4873 and 27644 ripening eggs of the total lengths of 107 mm and 177 mm respectively (Table 5). For the same range of total lengths, the relative fecundity was found to be 345 and 376 ripening eggs respectively. Fecundity was found to be directly related to length, weight and age of the ftsh (Figs. 5, 6 and 7). The equations describing the relationships between fecundity elther absolute or relative and the aforementioned varlables were as followed:

Fecundity related to fish length:-

$$
\begin{gathered}
\log A F=-2.742+3.214 \log L \quad r=0.084 \\
\log R F=1.392+0.612 \log L \quad r=0.824 \\
\text { TAGLE } 5 \\
\text { Relationship between fecundity and length, and } \\
\text { mefght of Lutjames lismolatus }
\end{gathered}
$$

Length range	Average of total length	Average of total melght	Mean absoluth fecundity	mean relative fecundity	Mumber of enaples
105-109	107	17.06	4873	395	10
110-114	112	17.12	6531	444	10
115-119	117	19.94	8222	473	15
120-124	122	21.90	10921	478	15
125-129	127	25.95	11029	482	24
130-134	132	28.60	12600	492	21
135-139	137	30.96	14256	607	12
140-144	142	34.06	16560	824	12
145-149	147	36.98	16854	52	15
150-154	152	42.21	1806	536	14
155-159	157	50.02	20690	537	12
160-164	162	56.50	22731	549	10
165-169	167	62.30	25416	562	8
170-174	172	70.80	25213	565	
175-179	177	76.16	27644	576	5

FIG. 6
Fecundity total length relationshtp of Lutjanus lineolatus.

FIG. 6
Fecundity total weight relattonship of Lutjanus 1faeolatus.

FIG. 7
Fecundity age relationship of Lutjanus itneolatus.

Fecundity related to fish weight :

$$
\begin{aligned}
& \log A F=2.616+0.998 \log W \quad r=0.98{ }^{1} \\
& \log R F=2.4145+0.188 \log W \quad r=0.936
\end{aligned}
$$

Fecundity related to fish age:

$$
\begin{aligned}
& \log A F=3.826+0.6209 \log A \quad r=0.840 \\
& \text { Lot } R B=2.596+0.810 \text { liget } A \quad t=\text { Rups }
\end{aligned}
$$

The absolute and relative fecundity as related to total length, total weight and age of the examined fish were lound to Increase as these varlables increase. Howevor, In comparison of the correlation coefficienta for the relationships of fecundity to length, weight and age of L. Hineolation It was found that the absolute fecundity-total leneth rolationship is more plose ($r=0.984$). Therefore, it is reasonable to say that the term of absoluty fecundity is a bafter expression than that of relative one, especlally when felated to total \%ody length. Armira and Bashirullah (io7s) reported For L. griseus from the Cubagua liland, Venezueala that the number of eggs varies individually, but fecundity seems related to the body woight and total length. In the present study the value of the exponent "b" in the relation between fecundity and total length of the examined fish it found to be 3.214. Rait (1933), Katz (1847) and simpson (1851) pointed out that the relationbetween fecundity and fotal length is best expressed by an equation of the type:

$$
\mathbf{F}=\mathbf{C} L^{n}
$$

where the value of exponent " n " is greater than S_{0}

REFERENCES

Al-Zahaby, A.S.; S.S. El-Serafy and N.A. El-Drawany, 1987. On the blology of Lutjanus lineolatus (Bloch.) in the Gulf of Suez: II Maturity and spaning season. Proc. 2001. Soc. A.R.E. 3rd Cong. 1987.
Armira, G.C. and A.K. Bashirullah, 1975. Biology of the gray snapper Lutjanus griseus (Linn.) from the Isle of Cupagua, Venezuela: II Sexual maturation and fertility. Biol. Inst. Dceanogr. Oriente Cumana, Vol. 14 (1):109-116.
Bagenal, T.B. and E. Braum, 1978. "Eggs and early life history" in IBP Handbook No. 3. Methods for assessment of fish production in freshmaters. (Ed.T. Bagenal) 165-201. Balckwell scientific publicatign.
Beckman. Hm. C. . 1948. The length-wefght relationship factors for conversion between standard and total length and coefficient of conditions for seven Mitchigan fishes. Trans. Amer. Fish. Soc., Vol. 76: 237-256.
Brown, M., 1957. The physiology of fishes Vol. 1. Metabolism, Vol. 2, Behaviour, Acadimic press, New York.
Edwards, R.R.C., 1985. Growth rates of Lutjanidae (snappers) in tropical Australian waters. J. Fish. Biol., Vol. 26: 1-4.
El-Serafy, S.S.: A.S. Al-Zahaby and M.A. El-Drawant, 1987. On the blology of Lutjanus limeolatus (Bloch.) in the gulf of suez: I hase and growth. Proc. Zool. Soc. A.R.E., 3 rd. Cong. 1987.
Harry, Erhardt, 1977. The biology of the lane snapper Lutjanus symagris in three localities along the combination Atlantic coast. Zool. Beitr. Vol. 23 (2): 235-265.
Hile, R., 1948. Standardization of methods of expressing length and weight of fish. Vrans. Amer. Fish Soc. Vol. 75: 157-164.
Katz, M., 1947. The fecundity of herring from various parts of the Morth Pacific. Trans. Amer. Fish Soc., for 1945, Vol, 75: 72-76.
Le Cren, E.D., 1951. The length-weight rolationship and seasonal cycle in gonad weight and condition in the perch (Praca fluriatilis). J. Anim. Ecol.. Vol. 20: 2017219.
Manooch, Charles 8. and Dane L. Mason, 1984. Age, growth and mortality of lane snapper Intjumes eynagris from southern Florida (U.S.A.I. mortheast ealf Sct. Vol. 7 (1): 109-116.
Mason, Diane L. and Charles 5. Manooch. 1086. Growth characteristics of mutton snapper Lutjama inelis long the east coast of Florida (U.S.A.). Peavama. Inst. Ieol. Acad. Cleme. Ciba, 0 (311): 1-5.
Raitt, D.S., 1933. The fecundity of the haddock. Fish. E. Scotlend, Sct. Invest. 1932 No. 1: 1-42.
simpson, A.C., 1951. The fecundity of the plafce. B.R. Nin. Aric. and Fish. s fish. Invest. Ser. 2. Vol. 17 (5): 1-27.
Sinha, N., 1975. Observation on the blology of Funtius saram of Loni Reservolir (M.B.). 1. Length-wefght relationship, food and condition factor. J. Inland Fish. Sec. Indie, Vol. A: 122-131.
Weatherley, A.M., 1959. Some features of the biology of the ench Tince tinct (Linnaeus) in Tasmania. J. Ania. Ecel. Vol. 28: 73-87.
Wright, A.t P.J. Delzell. A.H. Richards, 1986. Some aspects of the blology of the red bess, Lutjames bemar (Forsskil), frow the Tigak Island. Papue inw Cuinea. J. Fish Elel., Vol. 28: 533-544

