GENERAL PRELIMINARY CONTRIBUTION TO THE PLANKTON OF EGYPT

By

Mostafa Salah
Institute of Oceanogoaphy and Fisheries, Alexandria, Egypt
and
Gizella Tamas
Biological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary

I.-INTRODUCTION AND SYNOPSIS

The plankton of Egypt has reccived little attention (a.f. Salail 1963). This paper is mainly concerned with the p'ankton observed in the material examincd from the various aquatic babitats (marine-brackish-fresh) in Egypt. The object, has been to fill the gaps and to enlarge the knowledge of this economically important group, as a source of fish production. The collections were made (see map) from the following sources:
1.-Mediterranean Sea
2.-Suez Canal
3.-Bitter Lakes
4.-Gulf of Suez
5.-Red. Sea
6.-Delta Lakes
7.-Lake Koroun
8.-Nile River

The materials were taken by surface towing and during the trawling and dredging operations throughout the years 1964-65. So, however, the list of species is offered as a general preliminary contribution to the plankton of Egypt, particularty as regards Flagellates, Bacillariophyceae, Clatocera and Copepoda.

Briefly, the Delta lakes receive Nilewater via the land-drains, ard these are connected with the Mediterranean by certain natural openings. Lake Karoun in particular, differs as it is completely isolated from the sea. Salinity varies according to the different localities and seasons, from mostly freshwater to nearly marine. Variation in temperature of water is seasonal; the highest is during summer, while the lowest is in winter. The general characteristics of the Mediterranean and the Red seas resemble more or less those of the temperate and the tropical regions respectively.

It is worthmentioned to repeat here again that the total fauna and flora of the Egyptian Mediterranean is greatly influenced by the Nile (c.f. Steuer 1935; Liebmann 1935 and Salah 1963). Going from about Alexandria province to the East, there is an increasing enrichment caused by the progressive dilution of the sea-water (Liebmann 1935). Moreover, the opening of the Suez Canal contributes a remarkable eastern influence to the Mediterıanean basin (c.f. also Green 1961).

Accordingly, the area investigated shows a large numbers of distinguished species derived from different diverse habitats. besides some interesting new forms. The new species will be published in separate papers (the authors, under preparation., 1967; 1968; 1969).

Terminology: The term plankton refers in this investigation to those forms that can produce and act in the productivity, ICBS Symposium, Bergen 1957.

II.-SYSTEMATIC ACCOUNTS

The taxonomic arrangement for the Bacillariophyceae and the Flagellates is that of Hustedt (1927-1959; 1959-1962) and Iebour (1925; 1930) except that forms of Amphora and Pleurosigma are tabulated according to Peragallo (18971908; 1880-1891). The classification adopted for the Crustacea is by G.O. Sars. It is much the simplest, in addition that it furnishes a place for every valid genus.

The appendages of the specimens are dessected and mounted for accurrate determination of the species. Also dimensions refer only to the specimens actually measured in carrying out this work.

1.-Flagellates :

Dinophysis tripos Gourret. Lebour (1925), p. 72, Fig. 22. A tropical warmer water form. Koford (1929) descripes this species as sub-tropical neritic extending into the estuaries. It is widely distributed over the entire Mediterranean coast. Mostly of small twin sized specimens about 60μ, with two points to the hypotheca, the dorsal being shorter. Peremial in the Mediterranean (cf. Lebour 1925).

Dinophysis caudata Kent. Lebour (1925), p. 82, Fig. 21 C. Very common among tne Mediterranean collections, with length ranges from $60-80 \mu$ and usually of yellowish colouration. Karsten (1905) listed Dinophysis caudata as a tropical form.

Peridinium cerasus Pauls. Lebour (1925). 130, Pl. 27, Fig. 1. Fairly common. Diameter about $40 u$, globular with a conspicuous apical born; girdle oplique, not excavated. Transparent. Very common in the Mediterranean.

Peridinium cinctum Err. Schiller (1937), p. 152. Most common. It evidently grows well in shallow coastal waters where there is some dilu+ion. According to its distribution, it may be descriped as a surface insbore species that can stand considerable diluted waters (Salaf 1963). The investigations sbow that the growth conditions are stimulated by lower dilutions whereas the rate of division decreases with stronger concentrations (c.f. Braarud 1935; Braarud and Rappes 1951).

Ceratium macroceros (Efr.) Cleve. Lebour (1925), p. 155, Pl. 35, Fig. 1. Widespread. Like so many others Cer. macroceros shows occasional sings of increase very near to the coast (c.f. also Lucas 1941) and characteristic of temperate warmer regions. Body with long horn. Epitheca concave and somewhat sborter than hypotneca.

Ceratium furca (Ehr.) Claparede and Lach. Lebour (1925), p. 145, Pl. 30, Fig. 3. Widely distributed. Breadth about 42μ, length about $110 u$, epitheca narrow and drawn into a larger apical horn. The left horn is longer tban the right.

Ceratium massilense (Gorret and Karsten) Jorg. Jorgensen (1920), p. 85, Fig. 78. Occurs along the entire coastal shore. Typically anchor-shaped, strongly flattened, breadth about 42μ, with spines at each angle. Very common in brackisbwater habitats.

Ceratium fusus (Ehr.) Dujard. Lebour (1925), p. 146, Pl. 31, Fig. 1. Common along the sea-shores. Cer. fusus is widely distributed in tropical and subtropical waters, and Jorgensen (1955) commented on its extreme eurybaline nature. Rather long individuals with about 25μ, hypotheca narrow; right horn rudimetary.

Ceratium tripos (Muller) Nitzscr. Lebour (1925), p. 148, Pl. 32, Figs. a, b. Tropical and subtropical species. Body broad, epitheca rather fattened and as long as or a little shorter than the hypotheca. Very common in brackishwater (Lobmann 1908).

Gymnodinium lohmanni Paulsen. Paulsen (1908), pp. 99-100. Individuals of this form have been reported along the shores. These forms, on the whole, are probably too delicate as a group to be recorded adequately. Free swimming with broadly ellipsoidal body, rounded at the apices. Medium sized specimens about 14μ.

2.-Bacillariophyceae :

Melosira granulata (Err.) Ralfs var. angustissima Muller. Hustedt, Kieselalg. I, p. 250, Fig. 104 d . Very common in the Nile and contributes to the lakes through the drains. Survives chiefly in comparatively low water salinities, and is frequently found along the sea shore; with $20-25 \mu$ diameter. The occurrence of this form, in particular is a clear indication of the eutrophic status of the original habitat.

Melosira crucipunctata Bachm. Bachman (1930), p. 2, Figs. 1, 2, 3. Common among the lake water and survives in slightly brackish water habitat. Valves narrow 12-18 μ diameter.

Melosira jurgensii Ag. Hustedt, Kieselalg. I, p. 238, Fig. 89. A rather uncommon diatom in the lakes and along the Mediterranean-coast. Valves usually united in short chains. Frustules globose, with slightly flattened end. Dameter about 22μ.

Podosira montagnei Kütz. Hustedt, Kieselalg. I, p. 281, Fig. 122. Collected from the Mediterranean shore. Valves discoid with $35-50 \mu$ diameter.

Cyclotella meneghiniana Kütz. Hustedt, Kieselalg. I, p. 341, Fig. 174. A most cosmopolitan species, present in almost every type of surface water, as it tolerates a wide range of habitats. Valves about 22μ in diameter with sharp marked ring at the base of the radial straie.

Coscinodiscus excentricus Ehr. Hustedt, Kieselalg. I, p. 388, Fig. 201. Distributed along the coastal waters. Small sized specimens about 30μ in diameter. Sculpture hexagonal meshes arranged in slightly curved rows.

Coscinodiscus granii Gougre. Lebour (1930), p. 44, Figs. 20. Always occurred with low frequence but seems to be fairly distributed on the coasts. The determination rests principally on its bighly characteristic girdle wiew. Sculpture extremely fine but very distinct, radiating. No central nodule. Diameter 50-60 μ.

Coscinodiscus gigas Ehr. Peragallo (1897-1908), p. 118, Fig. 3, Distributed fairly along the coasts. Sculpture coarse with large strong meshes and broad margin. Conspicuous central nodule. Cells arranged in star-sbaped clusters. Valve diameter about 90μ. Hexagonal meshes towards the border; meshes become smaller and circular towards centre.

Actinoptychus vulgaris Schum. Peragallo (1897-1908), p. 410, Pl. 3, Figs. 2,3 . Oceanic, though less frequent over the marine areas. Rare in the brackish surface water. Valve about 42μ diameter, divided into sectors of the same size, alternately raised and depressed with a hexagonal central space.

Skeletonema costatum (Grev.) Cleve. Hustedt, Kieselalg. I, p. 311, Fig. 149 A. Neritic species, widespread along the coastal areas. Cells delicate 8-10 μ diameter, hyaline attached together by numerous thread like process.

Guinardia flaccida (Castr.) Perag. Peragallo (1897-1908), p. 559, Pl. 122, Figs. 1-3. An occanic form characteristic of warmer seas and is fairly distributed uniformely over the whole marine areas, yet there is a slight tendency to decrease inwards around the lakes' outlets. Guinard. flaccida is unable to bear a large deorease in the salinity, so its occurrence among the lake waters is rather seldom and confined to the extremes. Valve almost flat with diameter about 40μ. Mediterranean and Red scas (Paulsen 1912).

Dactyliosolen mediterraneus Per. Peragallo (1897-1908), p. 456, Pl. 122, Fig. 6. Prominent and mostly distributed along the Mediterra nean coastal shore. It can stand low salinities. This is shown by its abundant occurrence at the Deltas' lakes. Cells about 12-16 μ diameter, in chain, longer than broad.

Rhizosolenia hebetata (Bail.) Gran f. semispina (Hensen) Gran. Hustedt, Kieselalg. I, p. 592, Fig. 338. Observed from the marine habitats. Valves about $6-8 \mu$ diameter and end in a long curved hair-like spine. Tropicol ocean form (Paulsen 1912).

Rhizosolenia alata Brigertw. Peragallo (1897-1908), p. 466, Pl. 124, Fig. 7. Present in marine and brackish water types. Diameter varies from 12-18 u.

Rhizosolenia shrubsolei Cleve. Peragallo (1897-1908), p. 466, Fig. 5. Oblique, pointed with small wings at the base. Valve diameter about $20 u$. Cosmopolitan and one of the most frequent representatives of the genus. Ostenfeld (1913) classifies the species as oceanic, although it occurs most abundantly near to the shore. Mediterranean and Red seas (Paulsen 1912).

Rhizosolenia stolterfothii Per. Peragallo (1897-1908), p. 460, Pl. 122, Fig. 7. Present sporadically. A typical Mediterıanean neritic form. Cells in curved chains, often spiral with 12-16 u diameter.

Rhizosolenia calcar avis Sceultz. Hustedt, Kieselalg. I, p. 592, Fig. 339. Occurred rather irregularly from the marine habitats. A typical neritic and probably carried along by the currents since its occurrence is concurrent with other temperate neritic forms. It also shows that it is able to accommodate to varied salinities. Cells single or in bundles, more regularly curved at the apex with 25-30 u diameter.

Rhizosolenia fragillima (Bergon) Gran. Lebour (1930), p. 92, Fig. 65. Frequent. Valves united in short chains with $12 u$ diameter.

Bacteriastrum hyalinum Lauder. Hustedt, Kieselalg. I, p. 615, Fig. 345. Very common. Small sized specimens of about $18 u$ diameter. Terminal bristles have the bifurcations parallel to the chain axis instead of transerve. Cbaracteristic of the Indian Ocean and eastern tropical waters generally (Pavillard 1924).

Bacteriastrum delicatulum Cleve. Peragallo (1897-1908), Pl. 136, Fig. 8. Fairly common. Reported both with elliptical and triangular valves, which are extremely delicate; frustules cylindrical about 22μ in diameter. Mediterranean and Red seas (Paulsen 1912).

Chaetoceros affinis Lauder. Hustedt, Kieselalg. I, p. 695, Fig. 396. Very widely distributed along the shore surface water. Particularly abundant in the mixed water. Chains straight with the terminal bristles strongly divergent and thick. Valve diameter about 14 u.

Chaetoceros didymus Ehr. Hustedt, Kieselalg. I, p. 688, Fig. 390. Abundant along the coasts. Mostly with rather small sized specimens. Breadth about 14 u and with straight chains. This Chaetoceros is regarded by Lebour (1930) as a characteristic of wrmer seas and typical Mediterranean form. Neritic (Paưlsen 1912).

Chaetoceros curvisetus Cleve. Peragallo (1897-1908), p. 479, H1. 133, Fig. 5. Numerous. Chain is spirally curved filament, without distinct end valves about $12 u$ broad.

Chaetoceros decipiens Cleve. Peragallo (1897-1908), p. 485, Pl. 130, Figs. 4-8. Occurs in considerable numbers on the sea-shore waters. The size variation witbin this species is enormous but all with cells arranged in straight chains. It is but little sensitive to cbanges in the salinity and belongs to the group of species which can penetrate into more or less brackish coastal waters (c.f. Grontved 1949). Cbaracteriscic of warm Mediterranean region (Pavillard 1905).

Chaetoceros lauderi Ralfs. Peragallo (1897-1908), p. 481, Pl. 132, Fig. 3. Individuals with somewhat twisted chains are dominant and 12-18 u diameter. Especially characteristic of the brackishwater habitats. Mediterranean-Neritic (Pavillard 1905).

Climacodium biconcavum Cleve. Lebour (1930), p. 189, Fig. 149 b. Most frequent. Valves straight and flat, easily controlled, about $35 u$ broad.

Hemiaulus heibergii Cleve. Peragallo (1897-1908), p. 392, Pl. 94, Figs. 3, 5. Frequent with a wide range of distribution. Merely tropical. Valves elliptical single or in chains with breadth about $28 u$.

Lithodesmium undulatum EHR. Hustedt, Kieselalg. I, p. 789, Fig. 461. Valves three-corned with undulating margins $35-40 u$ broad. Rather distributed along the coasts. Littoral.

Ditylum brightwellii (West) Grun. Hustedt, Kieselalg. I, p. 784, Fig. 459 a. Common, but small sized specimens only. Individuals single or in short chains. With regard to distribution, Dit. brightwellii is very similar to Dit. intricatum, both are neritic, but as a rule less numerous among the plankton. The transverse diameter not exceeding $25 u$. The valve is furnished with stronlgy siliceous straight hollow spines and a marginal strenghthened by ribs.

Ditylum intricatum (West) Brun. Peragallo (1897-1908), p. 395, Pl. 96, Fig. 415. It thrives fairly well in the freshwater habitats and occurs constantly along the coastal shore. Individuals solitary or united in short chains by the spines. The transverse diameter about $48 u$. Temperate neritic Meditern ranean (Paulsen 1912).

Triceratium (Biddulphia) alternans (Bail.) Grun. ex. V.H. Hustedt, Kieselalg . I, p. 825, Fig. 488. This neritic form is very common and widely distributed. Frustules frequenoly in pairs. Valves triangular, sides slightly convex at the middle with diameter $40-60 u$. The angles are broadly rounded and cut off by a broad band of coarse reticulation and a narrow band of finer reticulation. Surface with puncta of irregular shape, larger at the centre and diminishing towards the apices of the angles.

Biddulphia mobiliensis Bail. Hustedt, Kieselalg. I, p. 840, Fig. 495; Lebour (1930), p. 174, Fig. 134. The species forms a significant part of the diatom plankton. Clearly distinguisbed by its two large bristles placed equally far from the processes and directed obliquely outwards. Valves with breadth 24-30 u, single or in short chains, elliprical lanceolate. Mediterran ean and true neritic (Paulsen 1912).

Biddulphia rhombus (Efr.) W. Smith. Hustedt, Kieselalg. I, p. 842, Figs. 496-497; Lebour (1930), p. 178, Fig. 138. Fairly distributed along the coastal shore as one of the most characteristic species of the plankton. Purely neritic, with diameter 40-60 u. Valve outline orbicular-rhomoboidal, strongly sculpture, with small thorns over the surface and few sttronger spines in the neighbourhood of the margins. Processes small, short and obtuse.

Biddulphia aurita (Lynab.) Brébisson and Godey. Huutedt, Kieselalg. I, p. 846, Fig. 501. Abundant all over the whole shores. Breadth of valve 25-40 u, with usually two spines. Valves united in straight or zigzag chains by the mucous threads of the processes. This neritic species is common in the plankton of all temperate seas (Hendey 1958).

Biddulphia obtusa (Kutz.) Ralfs. Boyer (1926-1927), Pl. 127, p. 123; Lebour (1930), p. 179, Fig. 139. This species has a general distribution especially in parts with fairly low salinity. Frustules united in zigzag chains by cushions of mucous. Very near Bidd. aurita, from which it is chiefly distinguished by the absence of central spines and by the shortness of the processes.

Biddulphia favus (Err.) V.H. Lebour (1930), p. 180, Fig. 140. Widely distributed along the Mediterranean area. Valve outline with three sharp corners, with slightly concave or convex sides. Zonal view quadrangular. Common in the triangular form.

Biddulphia vesiculosa (Aa.) Boyer. Lebour (1930), p. 181. Fairly common. Though it is known as a marine form, it is capable to accomodate itself in varied salinities and has been collected from different habitats along the coastal shore. Diameter of valve about $50 u$ with rounded four corners and more or less concave sides.

Asterionella japonica Cleve and Moller. Hưstedt, Kieselalg. 2, p. 254, Fig. 734. Of greater abundance along the Mediterranean coast. Gran (1905), Lucas (1941) and Grontved (1952) characterised Aster. japonica as being temparate-atlantic neritic. Its regular occurrence along the shores may be explained by the fact it belongs in the group of temperate plankton species. Colonies arranged in star-shaped clusters with breadth 45-60 u.

Rhabdonema adriaticum Kutz. Hustedt, Kieselalg. 2, p. 23, Fig. 552. One of the most important plankton diatoms. Less noticeable in sligh dy low salinity. Valves usually small sizes, not exceeding $36 u$. United to form flat, ribbon-like bands.

Climacosphenia elongata Bail. Peragallo (1897-1908), p. 352, Pl. 86, Figs. 1-4. Widespread and prominent among the plankton of the Mediterranean.

Grammatophora marina (Lynab.) Kutz. Hustedt, Kieselalg. 2, p. 43, Fig. 569. Generally distributed. It occurs in typically long chains with very fine striae.

Grammatophora angulosa Err. Hustedt, Kieselalg. 2, p. 39, Fig. 564. Common. Length of valve about $40 u$, linear-lanceolate. Cells colonial rectangular in girdle view with transverse striae.

Licmophora gracilis (Ehr.) Grun. var. anglica (Kutz.) Per. Hustedt, Kiesellalg. 2, p. 60, Fig. 583. This neritic form is found occasionally either solitary or chain forming cells. Valves club-shaped with length about $40 u$, at one (the lower) narrow and end pointed, at the upper end broader, usually rounded, with a middle distinet pseudoraphe. Striae fine, perpendicular 20-24 in $10 u$, with a well-marked pseudorapbe.

Synedra ulna (Nitzscr) Err. Hustedt, Kieselalg. 2, p. 195, Fig. 691 a. Abundant at the lakes. Valves linear-lanceolate with variable ends, but mostly more or less rounded and pointed. Transverse striae coarse about 10 , very finely punc tate. Pseudoraphe narrow.

Synedra tabulata (Ag.) Kutz. Hustedt, Kieselalg. 2, p. 218, Figs. 710 a-d. Recorded at all babitats along the Mediterranean shore. Valves lanceolate and gradually tapering towards the apices, sometimes with blunt ends. Transverse striae are very short and arranged on the border 10 in $10 u$. Pseudoraphe forms a large lanceolate space. Syn. tabulata is regarded by the limnologists (c.f. Round and Brook 1959; Huber-Pestalozzi 1942) as a typioal planktonic diatom cbaracteristic of eutrophic lakes.

Thalassionema nitzschioides Grun. Hustedt, Kieselalg. 2, p. 244, Fig. 725. Distributed along the sea-shores. Valves united in star-like or zigzag chain, slightly curved. Length very variable from 16-24 u, breadth 3-5 u. Neritic (Pavillard 1905) Mediterranean and Red seas.

Cocconeis placentula Eirr. var. euglypla (Eirr.) Cleve. Hustedt, Kieselalg. 2, p. 349, Fig. 802 c. Fresh and brackishwater of general distribution, almost everywhere. It tolerates a wide range of babitats and not sharply restricted to certain region. Easily recognised by the raphae of the upper valve crossed by four to five longitudinal blank bands.

Rhoicosphenia curvata (Kutz.) Grun. Hústedt, Kieselalg. 2, p. 430, Fig. 879. Very common and is not restricted as sregards to habitat. It shows a wide range of distriburion. Length of valve about 14-16 u with 20 striae in $10 u$.

Mastogloia braunii Grun. Peragallo (1897-1908), p. 33, Pl. 6, Figs. 6, 9. This beautiful species is characterised by the sligntly undulating lines of puncta and the small marginal loculi. Length $45 u$, breadth $16 u$. Mainly estuarine, and stands high salinities.

Mastogloia elliptica (A.q.) Cleve. Hustedt, Kieselalg. 2, p. 501, Fig. 927 a. The elliptic oblong valves with rostrate apices, are furnished with marginal loculi that extend almost the whole length of the margin. Those in the middle being longer than the others. Axial area very narrow or absent, central ncdule small, circular. Length 48 u , breadth 64 u .

Mastogloia exigua Lewis. Hưstedt, Kieselalg. 2, p. 569, Fig. 1003. Obserred irregularly from the brackishwater babitats. Loculi few 2 to 6 in the middle of each margin, with somewhat rounded interior edges.

Mastogloia pumila (Grun). Cleve. Hustedt, Kieselalg. 2, p. 553, Fig. 983 Recorded occasionally along the Mediterranean collections. Cbaraterized by the broadly elliptical valves with strongly marked raphe which booked in the same direction at both apices, and the uniform marginal band of loculi. The size varies, but mostly in the range of 55 u lengbt, and the breadth about 30 u . Loculi 6-8 on each side, of unequal size, the median being largest.

Diploneis pseudovalis Hustedt. Hustedt, Kieselalg. 2, p. 668, Fig. 1063 c. Spread over the Mediterranean shore. The fact that it occurs in different water masses indicates that it possesses great ecological amplitude. Costae rather fine and alternate with a double rows of alveoli.

Diploneis aestuarii Hustedt. Hustedt (1939), p. 612, Figs. 41, 42. This aestuarine Diploneis is, bowever, fairly widespread as a regular member of the local plankton. It is observed along the different babitats especially around the lakes' outlets. The specimens are always under the size usually given for this species varying from $22-26 \mathrm{u}$ in length. Costae crossed by longifudinal lines.

Navicula cryptocephala Kutz. var intermedia Grun. Hustedt (1930), p. 295, Fig. 497 b. A typical frehwater form that can survive in brackish water. Valves usually small and minute with scarcely capitate apices. Striae 18 in 10 n , radiate and slightly convergent towards the apices, finely lineat. Length about 24 u , breadth 8 u .

Navicula humerosa Breb . var minor Heiden. Heiden in A. Sch. Atlas, Pl. 243, Fig. 7. Mainly estuarine. Easily recognized by the strong and distinctly ribs together with the slightly constricted frustules in girlde view. Very variable in the coarseness and direction of the striae. Length about 45 u , breadth 26 u .

Navicula lyra Ehr. var. altanica Sceum. Cleve (1895), p. 63; Peragallo (1897-1908), p. 134, pl. 22, Fig. 14, Sporadic. Valves elliptic-lanceolate with produced rostrate-apiculate apices. Valve surface striate. Striae very punctate 16 in 10 u , slightly radiate and interrupted by lateral hyaline areas extending from the central part; lateral areas usually curved, lyre-shaped. Length about 62 u , breadub 24 u . According to Hendey (1958), Nav. lyra is widely distributed in temperate and tropical seas.

Navicula pygmaea Kutz. Hustedt (1930), p. 312, Fig. 561. Brackishwater with a wide range of distribution at various babitats. This species are of small sizes (28 u) with fine striae. Valve siliceous byaline, elliptical. Lateral areas convergent and constricted in the middle.

Gyrosigma distortum (W. Sm) Cleve. Hustedt (1930), p. 224, Fig. 334. Tbe occurrence of this species is in the main limited to certain localities. The ends of the sigmoid frustules are abruptly hant in opposite directions. The specimens recorded are usually less pr tracted than those described and very finely striated.

Gyrosigmx spencerii (W. Sus) Cleve. Hustedt (1930), p. 225, Fig. 336. Cbaracteristic of the diverse habitats along the Mediterranean shore. Valve sigmoid. Raphe somewhat flexuose, striae punctate. Transverse and longitudinal striae equidistant.

Gyrosigma kutsingii (Grun) Cleve. Hustedt (1930), p. 224, Fig. 333. Recorded at various habitats. Mainly estuarine. Rhombic-larceolate valve with gentle sigmoid lines towards acute apices. Striae are equidistant with the transverse striae 24 in 10 u .

Pleurosigma minutum Grun. Peragallo (1897-1908), d. 164, pl. 33, Fig. 11. Spread all over the shores. Valves with slightly protracted acute apices. Median line flexuose.

Pleurosigma aestuarii (Breb). SM. Cleve (1894), p. 2 ;peragallo (1897-1908), p. 164, pl 33, Fig. 9. Estuarine form. It is able to accommodate to varied salinities and to occur in cifferent habitats. Valves lanceolate with slightly rostrate apices and sigmoid raphe. Transverse and oblique striae equidistinct, 22 in 10 u .

Amphiprora paludosa Sm. var. duplex Donk. Peragallo (1897-1908), p. 184, pl. 38, Figs. 12-20. Sparsely along the shores. Median line slightly sigmoid. Frustules weakly siliceous with rounded apices. Raphe strongly sigmoid. Very finely striae. Striae about 30 in 10 u . Jenght about 22 u .

Tropidoneis lepidoptera (Greg). Cleve. Cleve (1894), P. 25; Peragallo (1897-1908), p. 188, pl. 39, Figs. 3, 7. Present on the shore in relatively small numbers. Valves linear-lanceolate witb acute apices. Central area often indistinct. Keel unilateral, projecting above the median line, somewhat tilted over.

Amphora ovalis Kutz. Hustedt (1930), p. 343, Fig. 628. One of the most dominant form in the freshwater habitats. As the salinity becomes higber, however, the species decreases in occurrence.

Amphora coffeaeformis Ag. Hustedt (1930) p. 345 Fig. 634. A brackish water form. It tolerates a wide range of salinity and occurs olong the entire shores. Frustules elliptic-lanceolate. Striae 24 in 10 u . Length about 12 u .

Amphora turgida (Greg). Gregory (1857) p. 510 Fig. 63; Peragallo (18971908) p. 231 pl. 50 Fig. 33. More or less frequent in the mixed waters. Frustules with rostrate apices, distinctly striated. Length akout 18 u breadth 8 u .

Amphora elegans Per. Peragallo (1897-1908) p. 223 pl. 49 Fig. 29. Sporadic and present on the sea sheres in relatively small numbers.

Amphora marina Sm. Peragallo (1897-1908) p. 200 pl. 44 Figs. 15-17. Occurs sporadically in the plankton. Generally minute specimens are found on the shores witb length about 60 u , breadth 12 u . Striae 12 in 10 u .

Nitzschia tryblionella Grun. Hustedt (1930) p. 399 Fig. 757. Few. Valves broadly rectangular, slightly constris ted in the middle, with cuneate apices. Longitudinal fold almost central. Va've surface striate, striae almost straight or only a little curved towards the apices. Length about 32μ, breadth 14μ.

Nitzschia closerium (Ehr) Sm Hustedt (1930), p. 424, Fig. 822. A cosomopoli\tan species. Valve solitary, very finely striate 28 in 10μ. Lenght of valve about 45μ. Treely movable, with hair-like bent ends, usually slightly curved in a semirircle.

Nitzschia microcephala Grun Peragallo (1897-1908), p. 206, pl. 73, Figs. 23, 24. One ot the dominant plankton form in the Delta lakes, but confined in relatively smaller frequencies along the Mediterronean coast.

Nitsschia sigma (Kutz) Sm Hustedt (1930), p. 420, Fig. 813. Fairly common with a wide range of distribution at different types of habitats. Valves sigmoid with acute apices. Keel distinct, puncta 9 in 10μ.

Nitzschia flexa Schum. Hustdt (1930), p. 420, Fig. 812 Found in the Della lakes and is doubtless carried into the Mediterranean by currents.

Nitzschia longissima Breb. Peraqallo (1897-1908), p. 293, pl. 84, Fig. 20. Frequently encountered along the Mediterranean shore. Small sized specimens fairly striate with length about 56μ. Keel puncta 8 in 10. u.

Nitzschia seriata Cleve, Peragallo (1897-1908), p. 290, pl. 84, Fige. 4, 6. Very important element among the plankton as it has a wide range of distribution. Nitzsch. seriata is known to thrive in quantity along the coastal waters (c.f. Gran and Braarud 1935; Braarud and others 1953). Valves united at the ends in long bair like chains; spindle-sbaped with rounded apices about 40μ long and 6μ broad. Neritic (Paulsen 1912).

Nitzschia bilobata Sm. var. minor Grun. Peragallo (1897-1908), p. 273, pl. 70, Fig. Recorded extensively along the Mediterranean shore. Linear-lanceolate, constricted in the middle. Marginal keel prominent. Striae 20 in 10 u .

Nitzschia obtusa SM var. scalpelliformis Grun. Hustedt (1930), p. 422, Fig. 817 d . Common at the Delta lakes.

Epithemia sorex Kutz. Hustedt (1930), p. 388, Fig. 736. Almost a fresh water form with a limited range of distribution in the lakes. Oligohalobous.

Cymatopleura solea (Breb) Sm. Hustedt (1930), p. 425, Fig. 823. Absolutely fresb and sensitive to slight rise in salinity. Recorded only from the lakes. Otherwise, it is rarely detected but with rather dead or recently dead frustules. Oligohalobous.

Surirella striatula Turp. Hustedt (1930), p. 445, Fig. 869. Frequent along the shores. Foged (1948) regards Sur. striatula as a marine or brackishwater form.

Surirella gemma Err. Heurck (1980-1885), pl. 74, Figs. 1-3 : Peragallo (1897-1908), p. 254, pl. 68, Fig. 4. Rarely recorded. Valve outline elliptic-ovate with the broader apex not bluntly rounded, but slightly produaed, giving a cuneiform appearance. Length about 45μ, breadth 32μ.

Campylodiscus daemalianus Grun Peragallo (1897-1908), p. 238, pl. 52, Fig. 6. Encountered intermittently from the lakes and at various localities along the Mediterranean coast. Valves orbicular, bearing radial costae which appear double near the margin for about half the length, thereafter single. Between the main costae are several shorter lines, usually 3 -or 4 . The apical area may be byaline. Diameter about 70μ.

Campylodiscus parvulus Breb Peragallo (1897-1908), p. 242, pl. 54, Fig. 9. This well known fresh water diatom, is occasionally found along the Mediterranean samples. Campylod. parvulus is characterized by the almost circular valve, and the narrow costae, without central differentiated area. Diameter about 60μ.

3.-Cladocera :

Fam. Sididae
gen. Diaphanosoma Fisceer
Diaphanosoma excisum Sars. Sars (1885), p. 13, pl. 2. Female : carapace oblong, truncate posteorly; body rather elongate, with height and breadth about equal. Total lenght about 0.6 mm . Recorded in somewhat large numbers, mostly with shorter antennae.

Fam. Daphnidae

gen. Daphnia Muller
Daphnia longispina Muller var. hyalina Leydia. Rylov (1953), Dis Binnengewàsser 15; Sars (1903), p. 164, 167, pl. 4, Fig. 2. Antennules slightly curved, with about ten notches on the distal part; lateral spines on the terminal claws four-five. Parthenogenetic females and ephippial females and males. Common.

Daphnia barbata Weltner. Weltner (1898); Ocioszynsk Wolska (1935). p. 145, pl. 24, Figs. 16-18. This daphnid is the chief component of the Cladoceran. Specimens included males and ephippial females, mostly with small sizes.

Daphnia lumholtzii Sars. Sars (1885), p. 18, pl. 1, Figs. 1-10. Female : ephippium with an armed rod with a double row of small posteriorly directed denticles; large spine jutting forth posteriorly from the carapace. Total lenght about 0.8 mm . Male : head somewhat depressed, spine of carapaae comparatively short, and margin slightly incurved and with very few denticles. Distinguished by the ephippium and the remarkably long and distant marginal denticles of the volve.
gen. Ceriodaphnia Schoedeler
Ceriodaphnia dubia Ricbard. Sars (1916), p. 317, pl. 34, Figs. 1,1 a, b. Female : eye comparatively large, anal denticles about ten on each side, the outermost one smaller than the others; apical claws without any secondary denticles. Total lenght about 0.4 mm .

Ceriodaphnia cornuta Sars. Sars (1885), p. 26, Figs, 1, 3, pl. 5. Female : head much depressed, body pellucid. Total length about 0.35 mm . Few small specimens both with and witbout horns, were recorded.

Ceriodaphnia rigaudi Richard. Sars (1916), p. 319, pl. 34, Figs 3, 3 a, b. Female : body semipellucid, carapace nearly rounded, anal denticles rather thin, six to eight on each side ; apical cla ws smooth. Total length about 0.3 mm . Recognized by the acuminate beak projection from the bead.

gen. Moina Baird.

Moina dubia Guerne and Richard. Sars (1916), p. 322, pl. 35, Figs. 4, 4 a, b. Female : body slightly pellucid, carapace comparatively small ; antennulae of moderate size and densely ciliated behind; anal denticles only seven on each side. Total lenght 0.4 mm . Parthenogenetic females only. A specific species characteristic of a high water salinity.

Fam. Lyncodaphnidaae
 gen, Macrothrix Baird.

Macrothrix spinosa Kings. Sars (1888), p. 25, pl. 3; Sars (1916), p. 326, pl. 36, Figs. 3, a, b. Female : body rather pellucid, antennulae strapsbaped, slightly curved with about six notcnes along the anterior edge, eacb with a tuft of very minute hair, those of male much larger, anteriorly with a ciliated seta at some distance from the base; tail amed with a single row of strong denticles. Total length about 0.35 mm . Male : mucb smaller and the earapace somewhat narrower, the antennulae much larger and less curved.

Fam. Bosminidae
gen. Bosmina Baird.

Bosmina longirostris Muller. Leydig (1860), p. 205, Pl. 8. Famale : the antennulae are slightly curved with about ten notches on the distal part; lateral spines on the terminal claws are four-five Total length abcut 0.2 mm . Generally distributed and rather common.

4.-Copepoda :

Sub-order Calanoida
Fam. Calanidae
gen. Calanus Leace, 1816.
Calanus minor Claus. Giesbrecat and Scrmeil (1898), Das Tierreich, Lief. 6, Copepoda, p. 15. Female : Head fused with the first segment; inner margin of
the first basipcd of the fifth legs with a straight edge, and more coarsely too thed. Total length about 1.5 mm . Male : a little smaller; the terminal segments of the right fifth exopod with only two inner setae ard a short terminal spine. Fairly well distributcd

gen. Undinula Scotт, 1909.

Uundinula vulgaris Dana. Scott (1909), Sibboga-Expeditie, 29 a, Copepoda, Pl. I, p. 16. Female : fiftb segment with pointed posterior corners turned ventrally; inner margin of fifth basipods armed with setae. Tital length arourd 1.5 mm . Male : right fifth leg very short, endopod three-segmented, without setae and tipped with two spines; left fifth leg with an endopod. Rather common.

Fam. Fucalanidae

gen. Eucalanus Dana, 1853.
Eucalanus attenuatus Dana. Giesbrecbit and Scrmeil (1898), Das Tierreich, Lief. 6, Copepoda, p. 20. Female : head triangular with an indentation on either side of the frontal margin; fifth segment rounded at the posterior corners. Male : bead triangular, without the marginal identation. Recorded in limited numbers.

Fam. Paracalanidae

gen. Paracalanus Boeck, 1864.
Paracalanus parvus Claus, Sars (1901), Crustacea of Norway, Vol. 4, p. 17, Pls. 8, 9. Female : body short and stout; fifth legs uniramose, two-segmented, inner terminal seta as long as the distal segment. Total length about 0.5 mm . Male : head thickened; fifth legs uniramose, right one two-segmented, left one five-segmented. Well aistributed among the brackish and marine babitats.
gen. Calocalanus Giesbrectit, 1888.
Calocalanus pavo Dana. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 185, Pls. 1, 4, 9, 36. Female : fifth legs four-semgented, the terminal segments with four or five plumose setae. Total length about 0.5 mm . Male : right fifth leg four-segmented.

Calocalanus plumosus Claus. Giesbrecert and Schmeil (1898), Das Tierreich, Lief. 6, Copepoda, p. 26. Female : segmentation indistinct; fifth legs much longer than in the preceding species, each four-segmented, end segment tipped with a single long plumose seta and three spines, both margins heavily fringed with long hairs. Recorded in limited numbers.

Fam. Pseudocalanidae
gen. Clausocalanus Giesbrecet, 1888.
Clausocalanus arcuicornis Dana. Gresbrecert and Schmeil (1898), Das Tierreich, Lief. 6, Copepoda, p. 27. Female : body elliptical in outline, genital segment
longer; caudal rami as wide as long, each with four setae of about equal length. Total length about 0.9 mm . Male : body oval in outline; setae of caudal rami more unequal in lengtb, the second inner one the largest.
gen. Pseudocalanus Boeck, 1872.
Pseudocalanus minutus Kroyer. Kroyer (1842), Vol. 3, Pl. 4, Copepoda I, p. 57, Pl. 1, Fig. 8; Wilson (1932), p. 43, Fig. 25. Female : anterior body elengateelliptical in outline; genital segment enlarged and projecting ventrally; fifth legs entirely lacking. Total length about 0.8 mm . Male : much smaller; fifth legs uniramose, asymmetrical, left leg five-segmented. Occasionally quite frequent.

Fam. Euchaetidae

gen. Euchaeta Prillifpi, 1843.
Euchaeta marina Prestandrea. Giesbrecet (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 245, Pls. 1, 15, 16. Female : a pointed knob projecting forward just above the base of the rostrum; basipods and rami of fourth legs smooth. Total length 0.9 mm . Male : body more slender; exopods of fifth legs ending in long stylet-shaped processes. Characterized by the pointed process on the forehead, by the asymmetry of the genital segment in the female, and by the form of the fifth legs in the male. It frequents tropical and temperate regions.

Frm. Centropagidae

gen. Centropages Kroyer, 1848.
Centropages typicus Kroyer. Sars (1903), Crustacea of Norway, Vol. 4, p. 75, Pls. 49-51. Female : metasome flattened; genital segment asymmetrical, with four stiff spines. Total length 0.8 mm . Male : body more slender; chela of right fifth leg very powerful and overlapping the caudal rami and both rami sharply pointed and curved inward towards each otber at the tip. Recognized by the rostral spikes, the urosome in the female and by the conspicuous dentiform projections on the anterior antennae.

Fam. Diaptomidae

gen Diaptomus Westwood. 1836.
Diaptomus salinus Daday. Daday (1909), p. 13 : Sars (1903), Crustacea of of Norway, p. 208, pl. 13, Figs. 2, a-f. The first abdominal segment is very short and slightly asymmetrical, the spine on the left side being longer than that on the right. Fairly well distributed in lake Karoun.
gen. Thermodiaptomus Kigfer, 1934.
Thermodiaptomus syngenes Kiefer. Kirfer (1934), p. 150, Figs. 59-94. Confined mainly to the fresbwater habitats and sparsely recorded from the DeltaLakes.

Fam. Temorida

gen. Temora Baird, 1885.
Temora stylifera Dana. Giesbrecet (1892). Fauna und Flora des Golfes von Heapel, Vol. 19, p. 328, pls. 5, 17, 38. Female : the inner spine of the eud segment of the fifth legs is mucb longer than the two apical spines, which are about equal in size. Male : spines at posterior corners of fiftb segment straight and reaching eqhind the posterior margin of the genital segment. Total length about 0.8 mm . The sharp-pointed triangular process at the corners of the fifth segment, combined with the elongate and slender caudal rami, are the distinguishing characters of this species.

Fam. Metridiidae

gen. Metridia Boeck, 1864.
Metridia lucens Boeck. Sars (1903), Crustacea of Norway, Vol. 4, p. 113, pl. 77. Female : posterior corners of fiftb segment angular, but without spines; end segment of fifth legs with three apical setae and a small spise on the outer margin; the inner apical setae is longest and the outer one shcrtest, all sparesely plumose. Male : left fifth leg a little shorter than the right five-segmented, the second segment with an inner fringe of hairs, spiniform process on inner margin of third segment of right fifth leg denticulate distally. Total length 0.8 mm . Limited in distribution.

Fam. Pontellidae

gen. Labidocera Lubвоск, 1853.
Labidocera acutifrons Dana. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 445, pls. 33-41. Female: forebead with a crest; right fifth leg larger than left, endopods stout conical spiner, exopods three times as long as cndopods, each ending in three stout divergent spines. Total lenght about 0.9 mm . Male : body longer and more slender; left fifth leg with a one-segmented cndopod half as long as the two-segmented exopod and tipped with a curved filament; chela of right leg mucb swollen at the knuckle, the finger with a wide and angular flap on its inner surface. The extraordinary asymmetry of the female and the details of the fifth legs in both sexes are distinguisbing characters.
gen. Pontellina Dana, 1853.
Pontellina plumata Dana. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 497, Pls . 25-40. Female: endopod of fifth legs less than half as long as exopod and ending in two acute aqual processes. Total length about 0.86 mm . Male : fifth legs each four-segmented, the left one tipped with four slender spines of equal length. Recognized by the comparative width of the body, the symmetry of the fifth segment and the urosome, and the details of the fifth legs in both sexes.

Fam. Acartiidae
gen. Acartia Dana, 1846.
Acartia latisetosa Kricz. Sars (1903), Crustacea of Norway, Vol. 4, p. 150, Pl. 99. Female: body oblong fusiform, last pair of legs with the terminal joint exserted to a slender setiform point and curved in the middle. Tatal length about 0.6 mm . Male: smaller, recognized by the structure of the anterior antennae and urosome; last pair of legs, 2nd and 3rd joints of right leg each expanded inside into a rounded lamellar projection. Occasionally quite frequent.

Acartia claussii Giesbrecht . Sars (1903), Crustacea of Norway, Vol. 4, p. 150, Pl. 101. Female: end segment of fifth legs short and stout, swollen at its base and acute distally, where it is armed with a fringe of short hairs along the outer margin, but without teeth. Total length around cne millimetre. Male: body shorter and narrower; end segment of right fifth leg narrow, strongly curved and armed with three or four small spines along its outer margin. This form shows ability for adaptation to differing degrees of sqlinity and occurs in brackisb water habitats.

Acartia longiremis Lilljeborg. Lilljeborg (1853), De Crustaceis ex-ordinis tribus; Cladocera, Ostracoda è Copepoda, in Scania occurrentibus, p. 181, Pl. 24, Figs. 1-15; Sars (1903), Grustacea of Norway, Vol. 4, p. 149, Pls. 99, 100. This species is not confined to the Mediterranean but occured occasionally from the Delta-Lakes.

Sub-order Harpacticoida

Fam. Longipediidae

gen. Longipedia Claus, 1863.
Longipedia coronata Claus Sars (1903), Crustacea of Norway, Vol. 5, p. 10, Pls. 3, 4. Female: distal segment of fifth legs with transverse ic ws of slerder spinules on the anterior surface near its base. Total lengt', about 0.8 mm . Male: smaller; distal segment of fiftb legs armed with seven slender setae, without the terminal spine. Recognized by the elongated second endopods and the peculiar form of the fifth legs.
gen. Canuella Scott, 1893.
Canuella perflexa Scott (1903), Crustacea of Norway, Vol. 5, p. 17, Pls. 8, 9. Female: body uniform width throughout, last pair of legs extremely minute, each forming a thin plate edged with four setae, distinctly plumous. Total length about 0.4 mm . Limited in distribution.

Fam. Ectinosomidae

gen. Ectinosoma Boeck, 1864.
Ectinosoma melaniceps Boeck Sars (1904), Crustacea of Norway, Vol. 5, p. 34, Pl. 21, Fig. 1. Female: body fusiform; last pair of legs of moderate size,
distal joint with the apical spines slender, setiform. Total lengtb about 0.2 mm . Characterized by the last pair of legs, exhibit several structural peculiarities. Fairly well distributed among the brackish water habitats.
gen. Microsetella Brady and Robertson, 1873.
Microsetella norvegica Boeck. Sars (1904), Crustacea of Norway, Vol. 5, p. 44, pl. 24. Female: body almost linear and strongly compressed. Inner expansion of basal segment of fifth leg reaching tip of distal segment, its outer seta twice the length of the inner one. Male: smaller; fifth legs like those of the female. Total length about 0.2 mm . Distinguished by its minute size and the laterally compressed body. Moderately aburdant.

Fam. Harpacticidae

gen. Harpacticus Edwards, 1838.
Harpacticus gracilis Clauds. Sars (1904), Crustacea of Norway, Vol. 5, p. 52, Pl. 30, Eig. 1. Female: body somewhat depressed; inner expansion of basal segment of fifth legs with four denticulate setae, the inner one not reduced in size, distal segment oblong, its outer margin with a continuous fring of cilia, its inner margin with scattered bairs. Tot .1 length about 0.3 mm . Male: slightly longer; fifth legs very small, distal segment cluk-sbaped, the three outer setae spiniform. Common in brackish and saltwater habitats.
gen. Microthalestris Sars, 1905.
Microthalestris forficula Claus. Sars (1905), Crustacea of Norway, Vol. 5, p. 123, Pl. 76. Female: body narrow and elongated; inner expansion of fifth legs scarcely reaching the basal quarter of the distal seqment, with five setae closely juxtaposed. Total length about 0.2 mm . Male: smaller; fifth legs much reduced in size, inner expansion of basal segment narrow-triangular, with two small setae. Characterized by its small size, by the very long and slender two-segmented endopod of the first leg. Limived in distribution.

Fam. Macrosetellidae

gen. Macrosetella Scotт, 1909.
Macrosetella gracilis Dana. Giesbrecht (1892), Fauna und Elora des Golfes von Neapel, Vol. 19, p. 559, Pls. 1, 45. Female: first antennae very strcng reaching the genital segment; basal expansion of fifth legs with four apical setae, the second inner one plumose and more than twice the length of the others, which are smoeth. Total length about 0.7 mm . Male: basal expansion of fifth legs very short and tipped with two setae. Recognized by the very long first antennae and apical caudal setae, the latter longer than the body itself. Moderately abundant along the Mediterranean coast.

Fam. Tachidiidae
gen. Tachidius Lilljeborg, 1853.
Tachidius littoralis Poppe (1881), Abb. Nat. Ver. Bremen, Vol. 7, pt. 2, p. 149, Pl. 6 ; WiLson (1932), p. 294, Fig. 180. Female: body slender; fifth leg a one-segmented lamina, curved inward at its tip, and armed with four plumose setae, the outer one the longest. Total length about 0.5 mm . Male: slightly smaller; ffth legs each reduced to a short lamina fused with the ventral surface of the fifth segment. Brackishwater species living close to the shore and in the brackish water lakes; characterized by the deep cut in the basal segment of the first antennae and the structure of the fifth legs.

Fam. Metidae

gen. Metis Phillipi, 1843.
Metis jousseaumei Richard. Richard. (1892), Bull. Soc. Zool. France, Vol. 17, p. 69. Female: cephalic segment about half the length of the body; fifth legs fused across the midline into a single lamina, with a shallow median apical sinus. Total length about 0.2 mm . Male : smaller and less swollen; the fifth legs are fused into a lamina shaped like the letter U., each branch tipped with two stout and short spines, curved outward. Able to adapt itself to any salinity (Wilson 1932).

Sub-order Cyclopoida
 Fam. Oithonidae

gen. Oithona Baird, 1843.
Oithona plumifera Baird. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 537., Pls. 3, 34, 44. Female: rostrum turned downward, the setae on the sides of the fifth metasome segment, project at right angles to the body axis. Total length 0.5 mm . Male: rostrum lacking; end segment of first and fourth exopods with two spines. Recognized by the long plumose setae; chiefly tropical.

Oithona similis Claus. Sars (1913), Crustacea of Norway, Vol. 6, pp. 8, 207, Pl. 3. Female: body moderately slender, rostrum turned dounwards. Total length about 0.6 mm . Male: rostrum entirely lacking ; end segments of the first four exopodes each with two outer margin spines. Distinguished by the number and arrangement of the outer spines on the swimming legs and by the ovisacs in the female. Littoral, and in tidal pools and salt marsh lakes.
gen. Oithonina Sars, 1913.
Oithonina nana Giesbrecht. Sars (1913), Crustacea of Norway, Vol. 6, p. 5. Female: body rather short and stout; fifth leg with a single apical setae and none on the side of the fifth segment. Total length 0.2 mm . Male : body shorter and stouter; groove between the first and second thorasic segment with a median dorsal sinus. Recognised by the squarely truncated forehead and the absence of a rostrum. Furthermore, the first antennae are shorter than in any of the other species.

Fam. Cyclopidae

gen. Halicyclops Norman, 1903.
Halicyclops magniceps Lillueborg. Sars (1913), Crustacea of Norway, Vol. 6, p. 29, pl. 15. Female: cephalic segment considerably large ; second inner seta on distal segment of fifth legs filiform, the others plumose. Total length about 0.4 mm . Male : much smaller; in the fifth legs, the basal segment is more distinetly defined and the terminal segment is narrower, with longer and more slender setae. Brackishwater species.

gen. Cyclops (Microcyclops Claus, 1893) Muller

Cyclops (Microcyclops) varicans Sar. Kiefer (1928), Das Tierreich, Lief. 53, p. 86; Kiefer (1934), p. 162, Figs. 104, 105. Female: metasome oval; basal segment of fifth leg fused with the fifth metasome segment, its presence indicated by a plumose setae. Total length about 0.5 mm . Male : body much more slender; basal segment of fifth leg always fused with the body. Recognized by the combination of twelve-segmented first antennae and two-segmented rami of the swimming legs. Brackishwater form.

gen. Mesocyclops (Thermocyclops Kiefer) Sars.

Mesocyclops (Thermocyclops) emini Mrazek. Kiefer (1934), p. 171, Fig. 136. Confined to the fresbwates habitats and recorded in limited numbers including both sexes.

Fam. Oncaeidae

gen. Oncaea Philippi, 1843.
Oncaea conifera Giesbrecht. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 591, Pls. 2, 47. Female: metasome elliptical; fifth leg cylindrical, its inner setae twice as long as the outer one. Total length about 0.5 mm . Male: smaller; fifth leg not articulated with the body segment, its apical setae very unequal. The great inequality of the apical setae of the fifth legs is the best single character of this species. The species is evidently not much influenced in its distribution by temperature and has been reported from both the Arctic (Mrazek 1902, p. 517) and Antarctic (Wolfenden 1911, p. 382; Farren 1929, p. 285).

Oncaea minuta Giesbrecht. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 591, Pl. 47. Female: metasome slender and fusiform; fifth leg as wide as long, the inner apical seta twice as long as the outer. Total length about 0.2 mm . Characterized by its minute size with widest head across its posterior margin. Mainly found in limited numbers along the Mediterranean coast.

Fam. Corycaeidae
gen. Corycaeus Dana, 1845.
Corycaeus obtusus Dana. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 659, Pls. 4, 51. Female: head separated from first segment;
endopod of fourth leg an elongate knob, with a single apical seta. Total length about 0.6 mm . Male: body considerably slender. Cammon.

Corycaeus danae Giesbrecht. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 660, Pl. 51. Female: head separated from first segment, third and fourth segments fused. Total length 0.6 mm . Male: body narrower, bead fused with first segment. Occasionally quite frequent.

Corycaeus ovalis Claus. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 629, Pls. 49-51. Female: bead indistinctly separated from first segment. Total length about 0.5 mm . Male: body much narrower. The exceptional width of the lappets of the fourth segment is one of the best characters for recognition of this species. Dahl (1912, p. 96) claimed it as a typical Mediterranean form.
gen. Sapphirina Thompson, 1829.
Sapphirina angusta Dana. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 619, Pls. 52, 53, 54. Female: head one-half longer than wide, narrowed anteriorly, tbird and fourth segments of second antenna shorter than the second segment. Total length one millimetre. Male : first four free segments each wider than the head, the second segment the widest. Easily recognized by its exceptional length in comparison with its breadth and by the broad process at the inner corner of the caudeal ramus.

Sapphirina gemma Dana. Giesbrecht (1892), Fauna und Flora des Golfes von Neapel, Vol. 19, p. 618, Pls. 3, 52-54. Female: head a little wider. Total length about 0.9 mm . Male: terminal segment of second endopod with three large lanceolate flanged spines, three setae and four small spines around the apex. Fairly well distributed.

gen. Copilia Dana, 1849.

Copilia mirabilis Dana. Brady (1883), voyage of H.M.S. Cballenger, Vol. 8, Pt. 23, Copepoda, p. 117, Pl. 53. Female: head quadrangular, widened posteriorly; fith legs two small knobs, each with a single apical sata. Total lengtb about 0.9 mm . Male: head separated from first segment; posterior margin of fourth segment with a median knob. Confined to the marine water habitats and moderately abundant.

III.-SUMMARY AND CONCLUSIONS

The species composition of the plankton of Egypt bas peen reported, mainly the free-swimming forms. The data are based upon a series of samples collected at intervals during the years 1964-1965, from the diverse babitats viz.: Mediterranean Sea; Suez Canal; Bitter Lakes; Gulf of Suez; Red Sea; Delta Lakes; Lake Karoun; Nile River.

The taxonomic analysis is noted. The remarkable feature of the present investigation is the large number of species. Altogether 151 species belonging to 85 genera are listed. Indeed, this constitutes the first record of the species covering nearly the entire habitats. However, the diatoms constitute quite the largest portion among the total crop both in numbers of species and individuals. Further more, the Dinophycean, particularly Peridinium and Dinophysis are also of importance. The following are the pricipal genera of the Bacillariophycease: Chaetoceros; Biddluphia; Rhizosolenia; Nitzschia; Melosira; Rhabdonema; Amphora; Cyclotella. These are roughly arranged in order of their important.

Forty-two species of Copepoda representing twenty-one families and thirtyfour genera have been listed. Paracalanus; Diaptomus; Temora; Longipedia; Oithonina; Mesocyclops; Oncaea; Corycaeus; Sapphirina are the chief components of the plankton. The Cladocerans are dominated cbiefly by Diaphanosoma excisum Sars; Ceriodaphnia dubia Richard; Moina dubia Guerne and Richard; Bosmina longirostris Muller.

Moreover, the present investigation has peen already added many new and interesting plankton species mainly detected from Lake Karoun and the Bitter Lakes (under publication $1967 ; 1968 ; 1969$).

On the average, the Mediterranean shore and the Delta lakes are comparatively very rich and more productive, on account of their eutrophication through the freshwater supplies. The relative poverty of the plankton in the Red Sea is also evident. The diatom group is the most important and widespread. Small sizes of the specimens are a striking character of the fauna and the flora. Qualitatively, the population is evidently influenced by the topographic and the hydrographic conditions prevailing on the spot.

In conclusion, the local babitats comprise a rich stock of plankton recruited from various localities. These forms can be classified into three distinct categories as follows (o.f. Tables).
1.-Freshwater forms which are abundant in the Nile, and are rather less common along the Mediterranean.
2.-Brackishwater forms with a wide range of distribution. These are very abundant and most common.
3. - Marine forms which are capable of surviving a certain amount of cbanges in the external medium.

IV.-ACKNOWLEDGEMENTS

This work was carried out during the study trip of Dr. M. Salab in Hungary in collaboration with Dr. G. Tamas. The autbors express their gartitude for the helpful assistance of the directors and collectives of the Natural-History Museum (Budapest) and the Biological Mesearch Institute of the Hungarian Academy of Sciences (Tihany).

Special cordial thanks are due to the Egyptian and to the Hungarian Goverments for the kind permission to undertake these researches. The autbors are also indebted to the Hungarian Academy of Sciences and to the Institute of Cultural Relations, Budapest, for the facilities afforded at their disposal.

VI.--TABLES OF DISTRIBUTION OF THE SPECIES

Species								
Flagellates								
Dinophysis tripos	+					+		
Dinophysis caudata	$+$					+		
Peridinium cerasus	+	+	+	+	+	$+$		
Peridinium cinctum	+	+			+	+		
Ceratium macroceros				+	+			
Ceratium furca	+	+	+	+	+	+		
Ceratium massilense	+	+	+	+	+	+		
Ceratium fusus	+							
Ceratium tripos	$+$	+	$+$	+	+	+		
Gymnodinium lohmanni	+		+					
Bacillariophyceae								
Melosira granulata var. angustissima						+		
Melosira crucipunatata	$+$					+		+
Melosira jurgensii	$+$	+				+	$+$	
Podosira montagnei . .	$+$					$+$		
Cyclotella meneghiniana	$+$	+				$+$	$+$	$+$
Coscinodiscus excentricus .	+	+			+	+	+	
Coscinodiscus granii	+							
Coscinodiscus gigas	$+$							
Actinoptychus vulgaris .	$+$					$+$		
Skeletonema costatum .	$+$					+		
Guinardia flaccida	+	$+$		+				
Dactyliosolen mediterraneus	$+$							
Rhizosolenia hebetata	+	$+$						
Rhizosolenia alata f. semispina	$+$	$+$	+	+	+	+		
Rhizosolenia shrubsolei.	+	$+$		+				
Rbizosolenia stolterfotbii	$+$	$+$	$+$					
Rhizosolenia calcar avis	$+$	+	+	+	+	$+$		
Rhizosolenia fragillima.	$+$							
Bacteriastrum hyalinum	+	+				+		

VI.-Tables of Distribution of the Species (contd.)

Species								
Bacteriastrum delicatulum	$+$	$+$				+		
Chaetoceros affinis . .	$+$	+						
Chaetoceros curvisetus	$+$	$+$				+		
Chaetoceros decipiens	+	$+$	+		$+$	$+$		
Chaetoceros lauderi. .	$+$	+						
Climacodium biconcavum	$+$							
Hemiaulus heibergii	$+$	$+$		$+$		$+$		
Lithodesmium undulatum	+	$+$				+		
Ditylum brightwellii .	+	$+$						
Ditylum intricatum	+	$+$						
Triceratium (Bidd.) alternans.,	+							
Biddulphia mobiliensis	+	+						
Biddulphia rbombus .						+	+	
Biddulphia aurita .	+	$+$				+		
Biddulphia favus	+							
Biddulphia obtusa . .	+					$+$		
Biddulphia vesiculosa	+					+		
Asterionella japonica . .	+							
Rhabdonema adriaticum	+					$+$		
Climacosphenia elongata	+					$+$		
Grammatophora marina	+	+				+	$+$	
Grammatophora angulosa . .						+	$+$	
Licmophora gracilis var. anglica	$+$		+	$+$		$+$	$+$	
Synedra ulna Synedra tabulata	$+$	$+$				\pm	\pm	+
Thalassionema nitzschioides..	$+$	$+$	+		+	$+$	\pm	
Cocconeis placentula var. euglypta								
Rhoicosphenia curvata						+	$+$	$+$
Mastogloia braunii .						$+$		
Mastogloia elliptica						$+$		
Mastogloia exigua						$+$		
Mastogloia pumila	+					+		
Diploneis pseudovalis .	+					$+$		
Diploneis aestuarii	+					$+$		
Navicula cryptocephala var. intermedia	+					+		

VI.-Tables of Distribution of the Species (contd.)

VI.-Tables of Distribution of the Species (conta.)

VI.-Tables of Distribution of the Species (contd.)

Spocioa	筥	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & \frac{8}{8} \\ & 8 \end{aligned}$			\%			\%
Microthalestris forficula	$+$							
Tachidius littoralis	+		$+$	$+$				
Metis jousseaumei .			+	+				
Oithona plumifera	$+$		+	$+$	$+$			
Oithona similis	+	+	+	+	+			
Oithonina nana	+	+	+	+	+	$+$		
Halicyclops magniceps						+	$+$	
Cyclops (Microcyclops) varicans . :							$+$	
Mesocyclops (Thermocyclops) emini								+
Oncaea conifera	$+$		$+$		$+$			
Oncaea minuta	$+$							
Corycaeus obtusus	$+$		$+$	$+$	$+$			
Corycaeus danae	$+$		+	+	$+$			
Corycaeus ovalis	$+$				+			
Sapphirina angusta	$+$							
Sapphirina gemma	$+$		$+$	$+$				
Copilia mirabilis .	$+$		+	$+$	+			

REFERENCES

BACMMANN, H., 1936.-Phytoplankton from the Nilo. Fisheries Research Directorate, Note and Momoires No. 22, Egypt.

BOYER, C.S., 1926-1927.-Synopsis of the North American Diatomaceac. Part I. Coscinodiscatao, Rhizosolenatao, Biddulphiatao. Part. II Naviculatae, Surirellatae. Proc. Acad. Nat. Sci. Philadelphia.
BRAARUD, T., 1935.-The Ost Expedition to the Denmark Strait 1929 II. The phytoplankton. and its conditions of growth. Hvalradets Skrifter, Oslo, Nr. 10, 1-173.

BRAARUD, T. and RAPPAS, I, 1951.-Experimental stadies of the Dinoflagellates; Pe dinium Norske Vid. Akad. I. Mat.-Natarv. Klasse, Nr. 2.

BRAARUD, T.-GAARDER, K.K.-GRONTVED, J., 1953.-The phytoplankton of the North Sea and Adjacent waters. Cons. Perm. Int. Explor. de la Mer., Vol. CXXXIII.

BRADY, G.S., 1883.-Report on the Copepoda colleoted by H.M.S. Challenger during the years 1873-1876. Publighed in 1883, as Volume 8, Part 23 of the Report on the Expedition,

CLEVE, P.T., 1894-1895.-Synopsis of the Naviculoid Diatoms I. and II. K. Sv. Vet. - Akad. Handl. Amsterdam (N.S. 1965).

DaDay, E.V., 1909.-Ostra coden und Plankton. Beiträge zur Kenntnis der Fauna Turkestans. Sonder-Abdruck aus "Travaux de la Société Emperiale des Naturalistes de St. Petersbourg" Bd. XXXIX, Heft 2.

DAHL, M., 1912.-Die Cope podeın der Plankton-Expedition I. Die Coryacaeinen (mit berücksichtigung aller bekanten Arten). Ergebn. Plankton Exped. Humboldt Stiftung, II., F.I. IV, pp. 135.

FarRan, G.P., 1929.-Crusta cea, Pt. 10, Copepoda. British Antarctic (Terra Nova). Expedition 1910. Nat. Hist. Rep. Zool. Vol. 8, Nr. 3.

FOGED, R. 1948.-Diatoms in water courses in Funen. Dansk Bot., Arkiv., Bind 12, Nr. 12.
GIESBRECHT, W., 1892.—Systematik und Faunistik der pelagischen Copepodn des Golfes von Neapel und der angrenzenden Meeresabschnitte. Fauna und Flora des Golfes von Neapel, monogr. 19, pp. 831, Pls 54 . Berlin.

GIESBRECHT, W. AND SCHMEIL, O, 1898.—Copepoda. Gymnoplea in "Das Tierreich "Lief. 6, Crustacea, pp. 169, 31 text Fige.

GHAZZAWI, F.W., 1938.-Plankton of the Egy ptian waters. Two Cladocera from the Plankron Inst. of Hydrobiology and Fisheries. Notes and Memoirs No. 31, Egypt.

GRAN, H.H., 1905.-Nordische Plankton XIX, Diatomeen. Kiel and Leipzig.
GRAN, H.H. and BRAARUD, T., 1935.-A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine. J. Biol. Brd. Canada. Vol. I (5), p. 279-467.

GREEN, J., 1961.-A Biology of Crustacea. London.
GREGORY, W., 1857.-On some new forms of marine Diatomacea found in the firth of Clyde and in Lake Fyne. Trans. Roy. Soc. Edn. 21, 473-543, Ednburgh.

GRONTVED, J., 1949.-Investigations on the phytoplankton in the Danish Waddensea. Medd. Komm. Danm. Fiskeri-og. Havundersog. Ser. Plankton, Bd. V., 2. Kobenhagen.

GRONTVED, J., 1952.-Investigations on the phytoplankton in the southern North Sea. Medd. Komm. Danm. Fiskeri-og Havundersog. Ser. Plankton 5, 5. Kobenhagen.

HENDEY, N.I., 1958.-Marine Diatoms from some Weat African Parts. J. Roy. Micr. Soc., London, Parts, I and II. Ser. III, Vol. LXXVII.

HEURCK, H. VAN , 1880-1885.-Synopsis, des Diatomées de Belgique. Anvers.
HUBER PESTALOZZI, G., 1938-1955.-Das Phytoplankton des Süsswassers. Die Binnengewäbser I-IV. Stuttgart.

HUSTEDT, F., 1927-1959.-Die Kieselalgen Deutschlands, Osterreichs und der Schweize, Raben. horst's Krytog. Flora 7, . I-920., Leipzig.

HUSTEDT, F., 1930.-Bacillariophyta. Pascher. Süsswasserflora Mitteleuropas, A. 10. Jena.
HUSTEDT, F. , 1939.-Die Diatomeenflora des Kustengebiets der Nordsee von Dollart bis sur Elbemündung. I. Abh. Nat. Ver. Bremen 31, p. 572-677.

HUSTEDT, F., 1959-1962.-Rabenhorst Kryptogamenflora von Deutschland, Österreich und der Schweiz. Die Kieselalgen Deutschlands, Osterreichs und der Schweiz unter Berucksichtigung der übrigen Länder Europas sowie der angrenzenden Meerergebieto. Leipzig.

JORGENSEN, E., 1920.—Mediterranean Caratia. Report Danish Oceanogr. Exped., 1908-1910. JORGENSEN, C.B., 1955.-Quantitative aspects of filter feeding invertebrates. Biol. Rev. 30
KARSTEN, G., 1905.-Das phytoplankton des Antarktischen Meeres nach dem Material der Deutschen Tief. Ergebni. d. deutsch. "Valdivia" II. Jena.
KIEFER, F., 1928.-Beiträge zur Copepoden - Kunde IX. Zool. Anz. LXXVI.
KIEFER, F., 1934.-Die freilebenden Copepoden Südafrikas. Zool. Jb. (Systematik) Band 65, Heft 2, p. 90-208, Jena.

KOFOID, C.A. $\triangle N D$ CAMPBELL, A.S., 1929.-A conspectus of the marine and fresh-water Cailiata. Univ. Calif. Publ. Zool. 34, p. 1-403.
KROYER, H., 1842.-Crustaces Copepoda in Atlas de Zoologie. Paris.
LEBOUR, M.V., 1925.-The dinoflagellates of northern seas. J. Mar. Biol. Lab. pp. 1-172, U.K Plymouth.

LEBOUR, M.V., 1930.-The planktonic diatome of Northern Seas. The Roy. Society., London. LEYDIG, F., 1860.-Naturgesohichte der Daphniden (Crustacea - Cladocera), p. 252, Pls. 1-10.
LIEBMANN, E., 1935.-Some oceanographical observations on the Palestine Coast. Comm. Intern. Explor. Mer Mediterr., Rap. Proc. Verg. 9.
LILLJEBORG, W., 1853.-Die Crustacies ex. ordinibus tribus in Scania occurrentibus ; Cladocera, Ostracoda et Copepoda, in Scania occurrentibus., pp. 222, Pls. 27, Lun, Akademisk, Affend ling.

LOHMANN, H., 1908.-Untersuchungen zur Feststellung des vollstandigen gehaltes des Meeres am plankton. Wiss. Meeres. Untersuch., Kiel X.
LUCAS, C.E., 1941.-Continuous plankton rcords. Phytoplankton in the North Sea, 1038-1939. Hull. Bull. Mar. Ecol., No. 8, 11, pp. 19-46.
MRAZEK, A., 1902.—Arktische Copepoda. Fauna Arctica Vol. 2, Fasc. 3, pp. 501-528, Figa. 13, Pls. 4-8.

OCIOSZYNSKA - WOLSKA, 1935.-Uber die Cladocerenfauna von Agypten I. Die Gattung Daphnia. Anmales Musei zoologici Polonici. Tom. XI, Warszawa, Nr. 8.
OSTENFELD, C.H., 1913.-On the distribution of Bacillariales in the plankton of the North European Waters. BuIl. Trin. Cons. Int. Exp. Mer. Planktonique 3.
PAULSEN, O.V.E, 1908.-Nordisches Plankton XVIII. Peridiniales.
PAULSEN, O.V.E., 1912.-Peridiniales Centrae. Const. Permanent International pour l'Exploration do fa Mer. Resumé Planktonique, 3 partie, Copenhagen,
PAVILLARD, J., 1905.-Research sur le flora pelagique de l'étange de Thau. Montpellier.
PAVILLARD, J., 1934.-Obervations sur les Diatomés (4 ser.). Le genre Bactetriasrum. Bull. Soc. France, LXXI, pp. 1084-99.
PERAGALLO, H. , 1890-1891.-Monographie du genre Pleurosigma et des genres allico. Le Diatomiste, Paris.
Peragallo, h. and Peragallo, M., 1897-1908.-Diatomées Marine de France et dea District Mari,times Voisins, I, II (text and plates). Paris and Grez sur-loing.
RICHARD, J. (1892).-Cladocéré nouveaux du Congo. Mém. Soc. Zool. France 5, pp. 213-226, 8, text-figs.
RICHARD, J., 1893.-Copépodes recueillis par M. le De.Th. Barrois en Egypt, en Syrie et en Palestine (Mars-Juin 1890). Revue biol. Nord. France 5, 400-405, 433-474.
ROSE, M, 1933.-Copépodes pelagiques. Fauna de France., No. 26.
ROUND, F.E, AND BROOK, A.J., 1959.-The phytoplankton of som Trish Loughs and an assessment of thier trophic status. Proc. Roy. Irish. Acad.-60, 167-191
RYLOV, W.M., 1935).-Die Cladoceren. Die Binnengewàsser 15, 97-157.

SALAH, M.M., 1963.-Plankton Investigation of the Mediterraneon Coast I. Hydrobiol. Dept. Notes and Memoirs No. 68, Egypt.
SALAH, M. (1967).-Decription of New Planktonic Diatoms from Egypt. Annal. Biol. Tihany. 34, 179-189. Hungaria
SALAH, M.; \& TAMAS, G. (1968).-Notes on New Planktonic Diatoms from Egypt. HYDROBIOLOGIA, 31, 2, 231-240, Den Hague.
SALAH, M., \& TAMAS, G. (1969).-A New Surirella from Eg.jpt. Acta Bot. Academiae Scientiarum Hungaricae, 14 (3-4), 369-371.
SARS, G.O., 1885.-On some Australian Gladocera, raised from dried mud. Vidensk-Selsk. Forth Christiania, No. 8, pp. 1-46, 8, Pls.
SARS, G.O., 1901.-Contributions to the knowledge of the freshwater Entomostraca of South America. Part. I. Cladocera. Arch. Math. Nat. Kristianai 23.
SARS, G.O., 1901-1903.-An account of theCr ustacea of Norway, Vol. 4, Copepoda, Calanoida. Pts. 1, 2,pp. 1-28,Pls. 1-16, 1901 ; Pts. 3-12, pp. 29-144, Pls. 17-96, 1902; Pts. 14, 13 pp; 145,171, Pls. 97-102 and suppl. 1903; Pls. 1-6. Bergen.
SARS, G.O., 1903.-On the Crustaceans. Fauna of Central Asia., Part 3. Copepeda and Ostracoda. Ann. du Musée Zool. de l'Akad. Imp. des Sciences de St. Petersbourg. T. 8, pp. 145.
SARS, G.O., 1904.-Pacifische Plankton-Crustaceen. Zool. Jahrb. Syst. 19, pp. 629-646, Pls. 33-38.
SARS, G.O., 1905.-LList preliminaire des Calanoidees recueillis pendant les campagnes de S.A.S. le prince Albert de Monaco, avec diagnoses des genres et des espèces nouvelles Pt. I, II. Bull. Mus. Oceanogr. Monaco, Nr. 26, 40.
SARS, G.O., 1903-1911.-An account of the Crustacea of Norway. Vol. 5, Copeoda, Harpacti., coida. Pts. 1, 2, pp. 1-28, Pls. 1-16, 1903 ; Pts. 3-6, pp. 29-72, Pls. 17-48, 1904 ; Pts. 7-1,0 pp. 73-132, Pls. 49-80, 1905 ; Pts. 11-16, pp. 133-196, Pls. 81-128, 1906 ; Pts. 17-20, pp. 197 240, Pls. 129-160, 1907,; Pts. 21-24, pp. 241-274, Pls. 161-192, 1908 ; Pts. 25-28, pp. 277-336, Pls. 193-224, 1909 ; Pts.29-30, pp. 337-368, Pls. 225-230 and suppl, 1910 ; Pls. 1-10and suppl 1910; Pts. 31-36, pp. 369-443, Pls. 11-54. 11-54, 1911., Bergen.
SARS, G.O., 1916.-The fresh water Entomostraca of Cape Province. Cladocera. Ann. South. Africa Mus. Vol. 15, pp. 303-351.
SARS, G.O., 1913-1918.-An account of the Crustacea of Norway. Vol. 6. Copepoda, Cyclopoida. Pts. 1-4, pp. 1-56, Pls. 1-32, 1913; Pts. 5, 6, pp. 57-80, Pls. 33-48, 1914; Pts. 7-10, pp. 81-140, Pls. 49-80, 1915 ; Pts. 11, 12, pp. 141-172, Pls. 81-86, 1917 ; Pts. 13, 14, pp. 173-225, Pls. 97-118, 1918.
SARS, G.O., 1924-1925.-Copépodes particulierement bathypélagique. Published as fascicule 69 of the Résultats des campagnes Scientifiques accomplies sur son yacht parAlbert Ier Prince Souverain de Monaco. The Atlas of Plates appeared in October 1924, the text in December 1925.

SCHILLER, J., 1937.-Dinoflagellates (Peridinae) in monographisoher Behandlung. Teil I. In Rabenhorst's Kryptogamen-Flora. Band 3, Abt. Leipzig.
SCHMIDT, A., 1874-1940.-Atlas der Diatomeenkunde, fortges. Von A. Schmidt, F. Fricke, O. Müller, H. Heiden und F. Hustedt. Aschersleben. Not concluded., Leipzig.

SCOTT, A., (1909). -The Copepoda of the Siboga Expedition in the Dutch East Indies during the years 1899 to 1900. Published in 1909 as monograph 29 a, part I. of the report on the Expedition. Free-swimming, littoral and semiparasitic Copepoda. 323, pp. 69, Pls. Leyden.
STEUER, A., 1935.-The fishery grounds near Alexandria. Preliminary Report. Fisheries Res. Directorate. Notes and Memoirs No. 8, Cairo.
WELTNER, W., 1898.-Ostafrikanische Cladoceren gesammelt von Hern Stuhlmann 1888 und 1889, Mittheil, Naturhist. Mus. Hamburg, 15.
WILSON, C.B., 1932.-Copepods of the Woods Hole region Massachusetts. U.S. Nat. Mus. Bull. No. $158 \mathrm{pp} .1-635$. Washington.
WOLFENDEN, R.N., 1911.-Die marinen Copepoden : 2, Die pelagischen Copepoden der Westwinddrift und des südlichen Eismeers. Mit Beschreibung mehrerer neuer Arten aus dem, atlantischen Ozean, Deutsche Süd-polar-Expedition 1901-1903; Vol. 12, Zoology, Vol. 4 Fasc. 4.
Prof. M. SALA.H. Inst. of Ocenogr. \& Fisheries ALEXANDRIA.

