EFFECT OF PHYSICO-CHEMICAL CONDITIONS ON THE DEPOSITION OF SOME ELEMENTS OF ASWAN HIGH DAM RESERVOIR WATER

A. S. ELEWA AND A. A. LATIF National Institute of Oceanography and Fisheries, Cairo, Egypt.

ABSTRACT

The physico-chemical parameters (pH, oxygen, temperature, electrical conductance, oxidizable organic matter as well as chemical composition, some cations and anions were measured in about 250 water samples representing 10 sites in the main channel of the Aswan High Dam Reservoir during the four seasons. 40 sediment samples as well representing the bottom sediments at the same water-sampled sites were analyzed for Na⁺, K⁺, Ca²⁺, Mg²⁺ as well as Cu, Mn, Zn, P and Fe

The study indicated the effect of the measured, parometers on the deposition of the estimated elements. Colloids as well are shared in their deposition by adsorption.

INTRODUCTION

Aswan High Dam Reservoir is one of the longest man-made lakes in the world, extending in Egypt for about 300 km as Lake Nasser and further south for 180 km as Lake Nubia in Sudan. Its northsouth orientation extende from Aswan High Dam (23° 58'N and 33°15' E) to Dal Cataract in Sudan (20° 27' N and 33° 35' E). It is located in a hot, arid environment often receiving no appreciable precipitation from both sides except for wind blown sand particularly from the west. Surrounding the reservoir is a rocky terrain consisting primarily of piedmonts and peneplains of Nubian sandstone of the Nubian Facies. West of the reservoir lies the flat and sandy Sahara Desert, while the mountainous east side is known as the Eastern Desert where Aswan granites are cropping out. The bottom configuration of the reservoir is influenced by the topography of the land, the water level, the sedimentation process, which is largely controlled by the annual flood and the geologic setting of the area. The Aswan High Dam Reservoir (AHDR) with a holding capacity of about 157 x 10^9 m³ of water is located 25 km south of the city of Aswan. Approximately 55 x 10^9 m³ of water can be discharged annually depending upon downstream demand.

The present work aims to reveal the physico-chemical parameters of the AHDR water controlling the deposition of some chemical cations and anions as well as compounds in colloidal and mineralic forms forming the bottom sediments. The temperature, transparency, dissolved oxygen, electrical conductance

and pH values of the water were measured by mean of hydrolab equipment from surface to bottom at different depth. Oxidizable organic matter and chemical constituents were measured according to the standard methods of Anon. (1975).

The sites of measurement along the old river channel were selected regarding nanowest and widest parts, the riverine and lacustrine of the Reservoir, also the different water masses under different factors in the reservoir as flood and climatic conditions and finally both the southern and the northern ends of the reservoir (Fig. 1).

FIG. 1 Aswan High Dam Reservoir (Lake Nasser and Lake Nubia) showing sites of profiles.

RESULTS AND DISCUSSION

Water Temperature

Aswan district is characterized by continental arid climate as it is a part of the great desert belt. Not climate prevails during summer where atmospheric temperature is usually around 35° C, while during winter the temperature is comparatively as low as less than 10° C in average particularly at night. Of course such climatic conditions affect the water temperature of AHDR.

From Table 1, it is obvious that Lake Nasser is a warm monomictic one. It is with one circulation during the year and stratified during the hot months.

	WINTER	SPRING	SUMMER	AUTUMN
H.D.	21 - 18.7	18 -15.8	27.4-18.2	25 -17.1
Kalabsha	22 - 19.6	19 - 16	28.4 19	26.5 -19
Allaqi	22 - 21.7	21 - 16.5	31.4-19.2	28.5 -17.7
El-Madiq	22.2 - 21.5	22.5 -16.5	28.7-18-2	26.7 - 19.9
Amada	21.3 - 21	26.5 -16.5	28.5-19.5	25.7 -18.5
Tushka	21.2 - 21	25 -16.5	28.2-19	26 -18.2
Abu Simble	20 - 20.3	24 - 16	28.7-18.7	27.4 -18
Adindan	20 -20.2	23.5 -15.9	27.6 - 18.7	25.2 -18.2

TABLE 1Ranges of water temperature (C°) of Lake Nasser (1981-1983).

The temperature controls the solubility of CaCO₃ and the metabolic rate of plants and animals. Cold waters rarely support large communities of carbonate-secreting or encrusting organisms. Consequently in summer and autumn when the water of the reservoir is warm, the activity of carbonate secreting or encrusting organisms expectingly increases that in Winter. As well the warm surface water alters the neutral point in the direction of greater hydrogen ion concentration (Mason, 1958).

Transparency

Flood water, usually brings great amounts of silt and clay, which usually result in decreasing transparency as the flood water coming from the Ethiopian high-lands.

The high load of silt in the Reservoir water is confined to Lake Nubia. Most of the silt is sedimented in Lake Nubia, while a limited amount reaches the southern part of Lake Nasser, Viz; Abu-Simble and Adindan. The transparency of Lake Nasser is reduced in spring and summer by the flourishing of phytoplankton. The transparency decreases to one meter in the north and middle thirds of the Lake where transperncy of about 4 m was recorded in winter. The extreme lowest values appear in the southern part of Lake Nasser under flood effect. Table 2 favors the inverse correlation between the deposition of the suspended matter and the transparency.

Consequently, transparency increases when the suspended products of weathering, are deposited, chiefly the mechanical, which consist essentially of tourmaline, zircon, ilmenite, magnetite, garnet, quartz, micas and feldspars as well as secondary clay minerals, altered feldspars, micas and the hydrolysates.

	LAK	ENAS	SER			LAKE	NUBI	٨		
H.D.	Amada	Tushka	Adidan	Sarra	Wadi Halfa	Murshid	El De- weishat	Akasha		
3	200	250	290	310	360	380	410	480		
410	200	150	120	120	90	55	55	50		
220	125	90	75	180	140	100	80	3 5		
130	1 2 0	100	80	66	48	20	12	3		
125	80	65	30	20	10	8				
30 0	57	40	37	60	50	10				
	H.D. 3 410 220 130 125 300	L A K 1 H.D. Amada 3 200 410 200 220 125 130 120 125 80 300 57	LAKE NAS H.D. Amada Tushka 3 200 250 410 200 150 220 125 90 130 120 100 125 80 65 300 57 40	LAKE NASSER H.D. Amada Tushka Adidan 3 200 250 290 410 200 150 120 220 125 90 75 130 120 100 80 125 80 65 30 300 57 40 37	LAKE NASSER H.D. Amada Tushka Adidan Sarra 3 200 250 290 310 410 200 150 120 120 220 125 90 75 180 130 120 100 80 66 125 80 65 30 20 300 57 40 37 60	LAKE NASSER H.D. Amada Tushka Adidan Sarra Wadi Halfa 3 200 250 290 310 360 410 200 150 120 120 90 220 125 90 75 180 140 130 120 100 80 66 48 125 80 65 30 20 10 300 57 40 37 60 50	LAKE NASSER LAKE H.D. Amada Tushka Adidan Sarra Wadi Halfa Murshid 3 200 250 290 310 360 380 410 200 150 120 120 90 55 220 125 90 75 180 140 100 130 120 100 80 66 48 20 125 80 65 30 20 10 8 300 57 40 37 60 50 10	LAKE NASSER LAKE NUBI H.D. Amada Tushka Adidan Sarra Wadi Halfa Murshid El De- weishat 3 200 250 290 310 360 380 410 410 200 150 120 120 90 55 55 220 125 90 75 180 140 100 80 130 120 100 80 66 48 20 12 125 80 65 30 20 10 8 300 57 40 37 60 50 10		

 TABLE
 2

 Transparency of Lake Nasser and Lake Nubla in some selected months

Electrical Conductance

The electrical conductivity (E.C.) is directly preportional to the amount of the suspended material (Fig. 2). The maximal values (327 µmhos) were recorded in Lake Nuble in the part lying between Murshid and ElDeba, the northward area till Sarre is characterized by an abrupt decrease in the electrical conductivity to reach 255 µmhos at Critic. This favors that the deposition of most of the load of the suspended material is in the area couth or weld Haifa and the main load is deposited in the part of the Lebe south Murshid.

Consequently the flood water afects the E.C. and its change depends $\prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}$

ł

Oxidizable Organic Matter

The oxidizable organic matter affects aquatic ecosystem by interacting with inorganic matter forming complex compounds which include in its structure the heavy metals (Visser, 1970). Such cause reaction of the oxidizable organic matter to produce H_2SO_4 (Foster, 1951). James, (1941) and Saunders, (1957), showed direct relationship of oxidizable organic matter with Mg⁺⁺ and pH and inversal relationship with oxygen and iron.

The concentration of the oxidizable organic matter is lower in both spring and summer than in autumn and winter, since warm and longer days with sunshine are more favorable for their concentration (Gonzalves and Joshi, 1946), following the Table:-

Season	Winter	Spring	Summer	Autumn
El-Ramla	3.0	2.1	2.1	1.2
Amada	4.0	1.9	1.9	2.6
Borderline	5.0	1.1	1.1	2.8

In addition, the Oxidizable organic matter increases from the border line in the south northwards during spring and summer, while it decreases in the same trend during winter and autumn. This is due to that the decrease in organic matter is mainly referred to its sedimentation adsorbed on to suspended mater.

Hydrogen Ion Concentration

The pII of the medium is particularly significant in controlling the precipitation of hydroxides and calcium carbonate from solution, transportation of alumina and silica in solution and their ultimate redeposition (Mason, 1958).

The measured pH values were plotted in the form of isolines (Fig. 3). The pH of the surface water is always higher than the deeper water during the four seasons and the water is more alkaline in winter and spring than in summer and autumn.

FIG. 3 Iso-lines of the pH values of Lake Nasser water.

The pH values of water in winter increase from south to north. The highest pH value is recorded at El-Ramla and Kalabsha.

In the same time, the pH of the surface and bettom water decreases in spring from south to north and was lower in the northern region in comparison to other southern localities. In summer, the pH value of the surface water is constant ϵt all profiles (>8.2), while in sutumn, the pH shows stratification from bottom (<7.7) to surface (>2.0).

Displaced Czinges

Effect Labe Marson & cutroplic (Letif, 1974) deep and shallow waters exhibit theomet structification, therefore, formation of an arygen depleted bottom layer networkly ensure in the bot servous. In winter, when the Lake is hearly homothermal the water is exygenated from the surface to the bottom (Table 3). In spring, due to the plankton blooming, the difference in exygen concentration between the surface and bottom becomes wider. As the Lake water begins to stratify thermally, the concentration of oxygen decrements in the bottom water layer whereby a non-exygenated bottom layer becomes well-established in summer (Fig. 6). The thickness of the exygenated layer, i.e. epilimnion, increases in thickness southwards from the High Dam to the border line. This is in agreement with the ideas of Hutchinson (1957), Welch (1952) Seiwell and Seiwell (1958), Gaterman (1975) and Ruttner (1952).

With the destruction of thermal stratification in the southern most part of Lake Nasser, with the incoming flood, the water column becomes oxygenated. This besides, the increased thickness of the upper oxygenated layer in autumn will ultimately result in the complete oxygenation of the Lake in the cold season and particularly in winter (Fig. 4).

According to the classification suggested by Perelman (1968) to the epigenetic processes in the supergene zone based on the typemorphic elements and compounds of the gaseous migration, the High Dam reservoir water can be divided to 2 media:

a- Oxidized medium (the oxygenated layer), in which iron, manganese, copper, vanadium, sulphur etc. are present in highly oxydized forms (Fe³⁺, Mn^{4+} , Cu^{2+} , V^{5+} , S^{6+} ... etc.). Since the oxygenated layer is always alkaline (pII >8), so the Eh slightly exceeds zero, usually Eh> 0.15 mV.

b- Reduced medium with free H_2S (the non-oxygenated layer) in which there is no free oxygen and other strong oxidizing agents. A lot of H_2S with occasional methan and CO₂ are present. Iron and many other heavy metals do not migrate as weakly soluble sulphides are formed. The type morphic compounds are H_2S and occasionally CO₂. This medium is characterized by alkaline conditions (pH>7), Eh value is almost less than zero (from -0.5 to 0.6 mV).

Local	İty						
Seasons	H.D.	Kalabsha	Allaqi	El-Madiq	Amada	Tushk	Borderline
			WINTE	 R			
Surface	7	7.5	9.7	8.4	11.3	8.8	8.8
10m depth	6.8	5.6	8.9	8.3	9.2	8.2	8.6
25m depth	6.6	5.6	8.6	8.4	8.1	8.1	8.4
50m depth	5.6	5.2	7.9	7.2	8.2	7.0	7.8
			SPRING	à			
Surface	8.4	10.1	9.2	10.15	11.6	11.4	8.9
10m depth	7.2	9.5	8.6	8.85	8.65	8.6	7.0
25m depth	5.85	6.6	6.3	. 6.2	7.2	6.4	7.75
50m depth	5.2	5.35	6.2	5.0	6.15	5.75	5.6
			SUMMER	2			
Surface	5.5	8.57	7.65	6.65	8.5	9.3	6.1
10m depth	0.3	5.1	7.05	2.9	2.95	3.89	5.9
25m depth	0.0	0.0	0.3	0.0	0.0	0.1	0.8
50m depth	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0
			AUTUM	<u>I</u>			
Surface	8.1	8.1	9	8.1	6.7	76.47	7.4
10m depth	5.6	6.5	5.5	5.83	4.8	6.53	6.9
25m depth	5.1	1.8	4.3	3.1	4.6	5.73	6.73
50m depth	0.0	0.0	0.0	0.0	2.45	0.0	2.8
·	_						

			TAE	BLE 3				
Seasonal	varia	tion	of o	kygen	concen	tration	at the	
surface,	10m,	25m,	and	50m.	depth	of Lake	Nasser	
	i	n dif	fere	nt lo	calitie	s		

The oxidation reduction conditions of fresh water in open bodies can be characterized by the oxidation-reduction index rH_2 which can be found from the following equation (Voznaya, 1983):-

.

 $rH_2 = Eh/0.029 + 2pH$

FIG. 4 Depth (m) of oxygenated upper layer of Lake Nasser and Lake Nubia in different months.

The oxidation-reduction potential Eh can be calculated for the given conditions from the Nernst formula and using the pH of water and the coefficient of its saturation with oxygen (rH_2) .

Eh (for t^o = 25° C) = Eo - 0.058 pH + 0.0145 log PO₂ (Voznaya, 1983) where Fo is the normal oxygen electrode potential.

The value Eo for oxygen is the function of the pH of the medium, hence the strong oxidizing power of oxygen shows up only in an acid medium.

From the pH patterns of Lake Nasser water, it can be deduced that power of oxygen is generally low, since the oxygenated layer is alkaline (pH>8). However, regarding the variation in thickness of the oxygenated layer seasonally it can be stated that the oxidizing power of oxygen in Lake Nasser is the highest in winter and the least in summer through spring and autumn.

However, the well established non-oxigenated layer in summer and autumn suggests a reduced bottom water which is slightly alkaline. Such medium favors the deposition of iron and manganese as well as some other heavy metals in the form of sulphides.

Chemical Composion Of Water

The major cations and anions concentration (mgl^{-1}) (Elewa, 1980) in Lake water varies in the following ranges:-

A- Cations:-

Na ⁺ 7.6 - 27.8	Ca ²⁺ 1	4.29 - 27.5
K ⁺ 0.6 - 8	Mg^{2+}	3.16 - 13.47

b- Anions:-

HCO3-	110.79 - 203.36	SiO_2^{3-}	10 - 35	;
CO3 ²⁻	0 - 22.2	P04 ³⁻	0.11- 0	.338
Cl-,	3.46 - 9.88	s ² -	0-40)0
504 ²⁻	2 - 14	NO3	0.667-	1.267

To characterize the intensity of aqueous migration of elements, Perelman (1968) introduced the aqueous migration coefficient (K_X), which can be computed according to the following equation:

$$K_{x} = m \times 100 / a n_{x}$$

Where; m_X : content the element x in water (mg/1)

 n_X : content of the element x in sediments (%)

a : mineralic residuals of water (mg/l).

 K_x values of Ca, Na, Mg, K and Si in the water of the reservoir at several MARK with the several of the severage content of the elements in the lithosphere given by Vinogradov (1962) is taken to represent n_x , since the catchment area of the Nile River occupies large territories of the central Africa where the various known rock units of the Arabo-Nubian shield are outcropping. According to the descending order of the values of K_x given the mentioned elements can be arranged in the following series: Na, Ca, Mg, K, Si. Perelman (ibid) considered Na, Ca and Mg strongly migrated elements in both oxidized and reduced conditions (K_x 10-10) while K and Si are moderately migrated elements (K_x 5 - 0.5).

Stations	Km.					
	H.D.	Na	Ca	Mg	К	Si
H.D.	3	5.39	5.73	2.97	1.5	0.048
Kalabsha	60	5.13	5.12	2.97	1.46	0.03
Tushka	250	5.69	4.49	2.50	1.63	0.039
Abu-simble	280	5.69	4.49	2.50	1.51	0.021
Sarra	310	21.47	4.76	2.53		0.02
Wadi Halfa	360	6.37	4.77	2.96		0.024
Amka	365	5.05	3.77	2.55		0.022
Gomt	37 2	7.5	4.52	2.52		0.03
Murshid	375	8.0	4.0	1.79		0.037
Kignarti	390	8.14	3.26	2.28		0.037
Semnar	400	8.36	3.53	3.38		0.033
Atteri	430	8.5	3.53	3.3		0.04
Daweishate	440	8.74	3.44	2.42		0.032
Malik El-Nasser	450	4.35	3.34	2.56		0.033
Okma	470	8.06	4.47	2.44		0.3
El-Daka	480	7.69	3,34	2.35		0.03

			IARTF	4				
Aqueous	mią	ration	coeḟ	fici	ent	(K _X)	of	some
elements	in	Aswan	High	Dami	Res	ervoi	r w	ater.

The average contents of some elements of the Ianthanides calculated from the data of Sherif et al. (1981) shows relatively appreciable values dissolved in water. The hydroxides of these elements are stronger bases than aluminum hydroxides. They, therefore, remains partly in solution during the weathering and the formation of hydrolyzated. Such remain are carried out down in the carbonate sediments because they replace calcium (Rankama and Sahama, 1950). In addition these lanthanides form ionic solutions during weathering with a moderatly high degree high of ease (following table).

· · · · · · · · · · · · · · · · · · ·						- ··· •		
La	Ce	Nd	Sm	Fu	76	Τm	۲b	Lu
	,							
0.1 - 290	4.31 - 119.04 38.68	<u>11.9 - 175</u> 68.35	0.25 - 8.75 3.47	0.42 - 1.25	0.01 -0.33	0.01 - 0.37 0.18	0.85 - 3.35	0.5 - 4.72

The minimum and the mean contents of some rare Earth metals in water of Aswan High Dam Reservoir. (ppb).

Major Cations

 K^+ content in water decreases from the surface downwards to the bottom water in the 4 seasons (Fig. 5) while there is no certain trend to control the content of Na⁺ in water. The effect of pH of water on their deposition is not noticeable. The low content of K^+ in the water in contact with the bottom sediments is due to its adsorption onto the clay minerals. Realy, during their cycle sodium and potassium, follow different courses.

Lake Nasser plotted on pH seasonal map.

 Mg^{++} in the reservoir water does not show certain regulation in its abundance and distribution.

FIG. 6 Calcium ion content (mgl⁻¹) in water Lake Nasser plotted on pH seasonal map.

Major Anions

Silicate distribution in Lake Nasser water indicates that the northern part of the Lake had more silicate than the southern one. However the variation in content of silicate of the surface and bottom waters is fluctuating and does not show certain trend either seasonally or from one year to another.

The sulphate concentration for the surface, middle and bottom layers of water column, in different'seasons is mostly less than 10 mgl⁻¹. Sulphide ions are not detected from the Lake water during the winter and the early spring. This is due to the whole oxygenated water column. The sulphides appear in summer and autumn and confined to the deep non-oxygenated layer of the lake and the khors. The rise in the sulphide concentration was very sharp on approaching the bottom of the Lake and the khors, particularly in the 0.5 - 10.0 cm just above the bottom sediment. The presence of the sulphides nearby the bottom sediments favours the deposition of the heavy metals as sulphides in summer in the form of black colloidal or granualar material mixed with dead organisms. A significant correlation was found (Saleh, 1976) between H₂S concentration, average bacterial count and most probable numbers of the sulphate reducing bacteria; following the table:

Month	Se	ptember	Oct	ctober	
Depth (m.)	H.D.	El-Ramla	н. р.	El-Ramla	
	0.1	0.0	0.05	0.0	
40	0.1	0.0	0.05	0.0	
80	1.01	0.55	0.382	0.53	
90	292.20		0.598	343.84	
		· *	400.0		

Sulphide concentration (mgl^{-1}) in Lake Nasser

The H₂S formed in the hypolimnion layer is likely to diffuse slowly towards the oxygenated uper layers as well as Fe^{2+} ions. Two possibilities may take place; either the Fe^{2+} ions combine with H₂S to form insoluble metal sulphides FeS, precipitate to the bottom, or the gas is oxidized to sulphur.

The phosphates are comparatively concentrated in the bottom relative to the surface water. In addition, the orthophosphate concentration in water appears to be function of time as it is more enriched in the water of period 1976/1977 relative to that of 1970/1971. In turn the spatial variation shows that orthophosphate concentration is lowest at the northern third of the Lake (Following table):

Average value of orthophosphate concentration

(mg/l) of Lake Nasser in the surface and bottom water.

n, v.	Kal.	A11.	E1-M	ladiq	Tush.	Adi	Ave.
7					· · · · ·		
0.130	0.153	0.15	0.25	0.11	0.138	0.235	0.167
0.338	0.295	0.31	0.298	0.20	0.20	0.33	0.282
1							
0.075	0.066	0.95	0.125	0.136	0.104	0.13	0.104
0.256	0.288	0.268	0.368	0.514	0.682	0.228	0.372
	7 0.130 0.338 1 0.075 0.256	N. D. Rall 0.130 0.153 0.338 0.295 1 0.075 0.066 0.256 0.288	N. D. Nat. Att. 7 0.130 0.153 0.15 0.338 0.295 0.31 1 0.075 0.066 0.95 0.256 0.288 0.268	N. D. Nat. Att. Eist 0.130 0.153 0.15 0.25 0.338 0.295 0.31 0.298 1 0.075 0.066 0.95 0.125 0.256 0.288 0.268 0.368	Amada Amada 7 0.130 0.153 0.15 0.25 0.11 0.338 0.295 0.31 0.298 0.20 1 0.075 0.066 0.95 0.125 0.136 0.256 0.288 0.268 0.368 0.514	Amada Amada 0.130 0.153 0.15 0.25 0.11 0.138 0.338 0.295 0.31 0.298 0.20 0.20 1 0.075 0.066 0.95 0.125 0.136 0.104 0.256 0.288 0.268 0.368 0.514 0.682	Annotation Annotation Annotation Amada Amada 0.130 0.153 0.15 0.25 0.11 0.138 0.235 0.338 0.295 0.31 0.298 0.20 0.20 0.33 1 0.075 0.066 0.95 0.125 0.136 0.104 0.13 0.256 0.288 0.268 0.368 0.514 0.682 0.228

The detailed study of the spatial behaviour of the dissolved solides and the chemical constituents in water of the High Dam Lake favors the following characteristics (Fig. 7):

1- The values of the total dissolved solids as well as the chemical constituents show abrupt decrease at Amka and Gami located 365 Km south of the High Dam. The part of the Lake characterized by high values is that which shows an initial stage of a delta formation.

2- SiO_2^{3-} , HCO_3^{-} , Ca^{2+} and Mg^{2+} contents increase from Wadi Halfa northwards, meanwhile Na⁺ content decreases. Cl⁻ content parctically does not show fluctuation in this part of the Reservoir.

According to the classification suggested by Perelman (1968) to the epigenetic processes in the supergene zone, water of the High Dam Reservoir can be considered as alkaline bicarbonate-calcite (pH > 8.5) medium where the typemorphic ions are Ca^{2+} and HCO_3^{-} .

Chemical Composition Of Bottom Sediments

Knowledge of the distribution patterns of the chemical constituents of the bottom sediments of the High Dam Researvoir (Figs. 8-12) help greatly to understand the behaviour of the chemical elements under the known local physico-chemical conditions.

 Al_2O_3 and Fe_2O_3 (Fig. 8) are mostly consistant in their distribution with each other in the sediments of the winter, autumn, and summer. In the spring their distribution patterns appear inconsistent. Their consistent distribution patterns can be explained since iron and aluminum are elements of hydrolysate due to their ionic potential (Mason, 1958) and can be separated simultaneously together in weakly alkaline medium. The occasional local deviation of their distribution is mostly due to the effect of the clay fraction amount.

FIG. 7 Mean concentration of silicate, bicarbonate, chloride, calcium, High Dam Reservoir during June 1982.

Lime and magnesia distribution curves (Fig. 9) are almost consistent throughout but show a slight inverse relationship in the sediments representing the four seasons. CaCO₃ value is extremely high in the sediments of Singari relative to the other profiles. This is mostly due to the biologic activity.

Υ.

FIG. 9 Average distribution of CaO and MgO of the bottom sediments of Lake Nasser in the different seasons.

The inverse behaviour of Al_2O_3 , CaO and MgO (Figs. 8 and 9) indicates independence of each of CaO and MgO from aluminium silicates such as plagioclase and chlorites respectively. Their inversed relationships favor as well that the increase of CaO and MgO is at the expense of aluminium bearing minerals mainly silicates. This enhances the presence of CaO and MgO as carbonates.

10.

- . i •

 \mathbb{Z}_{2}

FIG. 10 Average distribution of Na_2O and K_2O in bottom sediments of Lake Nasser in the different seasons.

Copper and zinc distribution curves of the sediments collected during 3 seasons are highly consistent with each other (Fig. 11). Those of iron and manganese of the autumn and the spring sediments are almost consistent with each other, while the summer sediment curves show inversed pattern (Fig. 12). The strongly related distribution of Cu, Zn and Mn favors their adsorption into the colloidal manganese compounds.

.

209

CONCLUSIONS

1- The water of the Reservoir can be subdivided into two media:

. . . ^e

· · · ·

a- Oxidized (the oxygenated layer) alkaline.

b- Reduced with free H₂S, slightly alkaline (the non-oxygenated layer).

2- Temperature, oxidizable organic matter and free oxygen play the important role to form the two media.

3- Deposition of the carbonates is related partly, to the alkaline medium, however, the carbonate secreting or encrusting organisms play the chief role at some parts of the Reservoir.

4- Al_2O_3 and Fe_2O_3 are deposited simultaneously as hydrolysates, however, the distribution of Na_2O and K_2O favored the presence of sodic and potash feldspars.

5- Iron, manganese and heavy metals were deposited in the form of colloidel sulphides in the reduced, slightly alkaline medium.

6- Copper and zinc were deposited adsorbed onto the colloidal manganese.

REFERENCES

Anon., 1972. Schlumberger Documents. Edition Log interpretation volume 1 principles.

- Anon., 1975. American Public Health Association: Standard methods for the examination of water and waste water, 14 th Edd. New York.
- Elewa, A.A., 1980. Studies on the distribution of some elements in water and sediments of Lake Nasser.

Foster, J.W., 1951. Autrophic assimiliation of Carbon Dioxide, Bacterial physiology. (Ed.) Werkman, C.H. and Wilson, P.W. Academic Press. Ind. New York.

- Gonzalves, E.A. and D.B. Joshi, 1946. Fresh water algae near Bombay. J. Bombay Nat. Histo. Soc., Vol. 46 (1): 154-176.
- Golterman, H.L., 1975. Physiological Limmological. An Approach to the physiology of lake exosystems. Elsevier Scientific Publishing Co. Amsterdam-Oxford-New York.
- Hutchinson, C.E., 1957. A treatise on limnology. Geography. Physics and Chemistry. Jhon Wiely and sons, New York, V.I.P. XIV + 1015.
- James, H.R., 1941. Bear's Law and the properties of organic matter in natural waters. FAO Fish Biol. Rep. No. 34, Rome.
- Krumbein, N.C. and R.M. Garrels, 1952. Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials. J. Geol. 60: 1-33.
- Latif, A.F.A., 1974. Fisheries of Lake Nasser, ARP, LNDC, Egypt.
- Mason, B., 1958. Principles of Geochemistry. 2nd. ed. New-York.
- Perelman, A.I., 1968. Geochemistry of epigenetic processes, Supergene zone. M. Nedra (In Russian).
- Ruttner, F., 1953. Fundamentals of Limnology. 3 rd. ed. 1-261, Canada.
- Rankama, K. and T. G. Sahama, 1950. Geochemistry. Chicago, Univ. Chicago Press, XVI, 912 pp.
- Rook, J.J., 1975. Operating experience with the barenplaat reservoir and River Rhine water. Proceeding of the water research centre symposium (The effect of storage on water quality).
- Saunders, G.W., 1957. Interrelation of dissolved organic matter and phytoplankton. Bot. Rev., Vol. 23: 398-409.

. ^{t.}

Seiwell, H.R. and G.E. Seiwell, 1958. The sinking of docomposing plankton in sea water and its relationship to over the sinking of docomposing plankton in sea water. Phil. Soc. Proc., Vol. 78: 465-481.

i

Saleh, A.M., 1976. A study on the phenomenon of taste and odour in Lake Nasser. Rep. to the Academy of Scientific Research and Technology, Cairo Egypt.

Sherif, M.K.; R.A. Awadallah and F. Grass, 1981. Rare earth elements in water samples in Lake Nasser- Lake Nubia. Bull. Fac. Sci., Assiut University, Vol. 7 (1): 379-391.

Vinogradov, A.P., 1962. Average content of chemical elements in the main types in igneous of the earth crust, Geochemistry, No. 7.

Visser, S.A., 1970. A review of the distribution of organic compounds in fresh water lakes and river, The African Journal of Trophical Hydrobiology and Fisheries.

Voznaya, N.F., 1983. Chemistry of Mater and Microbiology. Translated from the Russian by Alexander Posinkin, Mir Publishers Moscow.

Welch, P.S., 1952. Limmology. New York and London, Mcgraw-Hill Book Co. pp. 471.