Bull. Inst. Oceanogr. \& Fish., ARE, 13 (2), 1987: 189-203.

ANALYSIS OF TIE COMMERCIAL TRAWL CATCI of tile arabian gulf

*Fish Garden, Lamalek, Calro, Egypt.
**National Institute of Oceanography \& Fish., Alexandria, Egypt.
*** Department of Fish., Ministry of Industry and Agriculture, Wha, Qatar.

Abstract

The study was concentrated on the analysis of the total catch of the fishing vessel (f / v) Gazelle during the years 1977 and 1978 . The annual landing amounted to about 197 and 253 tons, respectively. It was found that the groupers (family serranidae), and the seabreams (family Lethrinidae) together contributed about half the total yield. The goat fish (family Mullidae) and the jacks (family Carangidae) together gave more than 20% of the catch. The threadfin breams (famlly Memipteridae) and barracuda (famlly Sphyrinidae) together contributed about 13\%. The rest were some marketable fish amounting to nearly 17% of the total catch.

INTRODUCTION

The fishery resources of the Gulf attracted increasing attention of those interested in commercial exploitation. The Arabian Gulf (Fig. 1) penetrates from the Indian Ocean, covers an area of 239000 square kilometers. It is a shallow sea having a mean depth of only 35 meters, and the greatest depth is about 90 meters or so in the middle of the Gulf. The water is very shallow near the delta of Shatt El-Arab at the northern end of the Gulf. Along the lranian coast, there is the central deeper part ranging from 70 to 90 meters. The bottom sediments in the deepest part, as well as in Shatt El-Arab is soft mud and clay which was brought into the Gulf by the rivers and the desert storms.

The countries bordering the Gulf are rich not only in petroleum, but also in fish, shell fish and shrimps. Several countries develop fishing industry with some success as an additional source of income to oil (Al-Kholy, 1973). The potential yield is belived to be as much as 50,000 tons of demersal species only, (FAO 1980).

MATERIAI, AND METIIOIS

Trawl fishing of demersal fish was recenlly introduced in 1975 by a stern trawler namely the fishing vessel (f / v) Gazelle. The vessel makes short

Fig. 1
A Map of the Arabian Gulf.
trips in the area between Qatar and United Arab Emirates (U.A.E.). The area used to be dragged by f / v Gazelle is slinwn by squares in, (Fig. 2). This area is limited between longitudes 51° and 54° aromed llaloul Island. Fishing is conducted during daylight only.

The net used for fishing is a high opening bottom trawl, designed for a stern trawler with 600 H.P. which is the main engine of f / v Gazelle. The net is constructed throughout from nylon webbing 200 mm mesh bar in the wings and 30 mm mesh bar in the condend. The head and footropes of the net are 34.0 and 39.0 meters long, respectively.

F/V Gazelle began the experimental fishing on July 1975. Irregular trips operated at 1976 in an attempt to draw a map for trawl fishing in the area north east to and around Haloul lsland. Trawl fishing on the commercial basis began from January 1977.

Fig. 2
Areas dragged by F/V Gazelle.

The f/v Gazelle conducted 56 trips from February to December 1977, and 74 trips during the same period in 1978, as January is the annual month fro repair and maintenance. The summery reports of these trips executed during this period were analysed to determine the total catch, variation in the catch according to different seasons and the aviability of marketable fish.

RESULTSS AND DISCUSSION

The total catch of the fishing vessel Gazelle during the period from 1975 to 1980 is given below:

Year
1975
1976
1977
1978
1979
1980

Total Catch (ton)
60
121
197
253
433
486

The catch during the period from 1975 to 1978 was obtained by a trawl net of mesh size 30 mm of the codend. The low production during the years 1975 and 1976 was due to the use of f/v Gazelle for experimental fishing. The total yield during the years 1977 and 1978 increased because of the regular trips conducted after the experimental fishing. The production of f / v Gazelle was nearly doubled during 1979 due to the change of the mesh of the codend from 30 mm to 45 mm . The total yield during the years 1979 and 1980 will be discussed seperately due to the change in the mesh size of the codend. Analysis of the fishing logs of the vessel during this period shows that fishing was restricted to a narrow band immediately within the 38 metros isobath (20 fathoms) from the Qatin Peninsula across to the coast of U.A.E. However most of the effort during this period was expended in the area around llaloul Island.

Ilydrographic Conditions in the Gulf Area:

The temperature in the Gulf plays an \vdots powant role in the fishing operations. The consecutive four seasons can : The riearly pbserved. There is only a long hot season and a short warm one. in: hat are n extends to more than seven months when the temperature ranges between 30 and $45^{\circ} \mathrm{C}$. The rest of the year is merely cool when the temperature ranges between 18 and $30^{\circ} \mathrm{C}$. The average air and water tomperafures through the years 1977 and 1978 are shown in Table (1).

The daily air temperature in winter reaches a minimum of $18^{\circ} \mathrm{C}$ causing the sea water temperature to fall to $15^{\circ} \mathrm{C}$. In summer, the daily air temperature rises to an average of $42^{\circ} \mathrm{C}$ and the sea water temperature reaches $35^{\circ} \mathrm{C}$ and even more in August. The water of the Gulf attains temperatures that are the highest of any enclosed sea in the world.

Rivaporation of the water produces very high salinities of about 48 parts per thousand, and over 100% in some shallow bays.

TARLE 1
Avernge air and waler temperature in "C elslus
In the years 1971 and 1978.

Honth	1917		1978	
	Alr	Nater	Alr	Water
January	18.2	19.1	17.7	18.5
「ebruary	18.6	19.3	18.5	19.1
March	20.5	21.2	21.1	22.2
Aprll	23.9	24.8	25.5	26.5
Miy	30.8	28.5	31.2	29.4
dune	35.6	32.1	35.2	32.2
July	39.5	35.4	39.2	35.9
August	45.7	38.5	45.6	38.6
September	40.1	36.5 .	41.1	39.9
Or tober	35.7	30.7	37.7	30.2
November	2 2. 3	27.3	28.9	26.9
Oecember	19.1	20.9	18.5	19.8

Seasoanl Fluctuations in the Catch

The annual landing of f/v Gazelle during the years 1977 and 1979 amounted to 196665 and 253182 kilograms, respectively, as shown in Tables (2) and (3) and represented in Figs. (3) and (4). It was found that the catch was rich during the hot season, and comparatively poor during the warm one. Although the data was analysed according to the consecutive four seasons of the year, yet it was very clear that the catch was higher during the period from April to October, than from November to March. The catch varied considerabely according to the area dragged, nature of the botiom, differences in the gear effeciency, fish behaviour and time of the day, beside some other factors.

The seasonal variations in the commercial catch are given in tobles 4 and 5 while the total catch and catch rate/hour of the marketable fish families were shown in table 6. The mean value of the catch for the species belonging to the genus Epinephelus was about $12.3 \mathrm{~kg} /$ hour in 1977 decreased to $9.8 \mathrm{~kg} / \mathrm{hour}$ in 1978 . This is not due to the decrease in the total yield of the groupers, but due to the increase in the total catch of 1978. The catch of the pigface breams coincided with the groupers, so that the high yield of the year 1978, due to the increase in number of trips, lowered both the percentage composition in the catch and consequently the catch per hour.
Total catch (Kg) obtanned by f/v gazelle througn the year 1977

Sow.	:	2	3	4	5	6	,	\bigcirc	9	10	${ }^{11}$	12
an.												
*r.	$\underset{(2364}{836}$	(2004	${ }_{\text {(1.2) }} 9$	532 (1.6)	(19.4)		(1.1) ${ }^{176}$	(0.17	380 10.81	${ }_{(1.9)}$	${ }_{(1800}^{18.7)}$	
Mr.	${ }_{\text {(17.8) }}^{(1376)}$		${ }_{(1459}^{1159}$	${ }_{\text {(0.4) }}{ }^{96}$	${ }_{(3.4)}^{1888}$	${ }_{\text {c }}^{16.65}$	${ }_{(0.3)}$	-	${ }_{(036)}^{93.8}$		${ }_{(8.3)}^{\text {2103 }}$	
N.	(17.6)	${ }_{\substack{\text { (13.302 } \\ 12802}}$	(4.7)	${ }^{10.4)}$	${ }^{(3,4)}$		${ }_{\text {(0.3) }}^{18}$			${ }_{\substack{\text { (1.2) } \\ 230}}^{\text {20 }}$	${ }^{(8.8)}$	
-	(8.6)	${ }^{148.029}$	(5.93)	(0.21)	(2.6)	150,	(0.1)	.	(2.9)	${ }^{10.8)}$	(13.3)	(0.1)
inn.	$\underset{\text { (5.4) }}{\text { (114 }}$		(5.9)	:	:	(8.4)		:	(0.3)	(15.7)	(24.3)	
wi.												
mag.	${ }_{\text {(650, }}^{500}$	${ }_{\text {che }}^{5180}$	${ }_{(603}^{\text {(60.5) }}$	-	-	(1122			-	${ }^{200}$	${ }^{628}$	
sos.	(6.09	${ }^{\text {(15.26 }}$	1175	-	.	${ }_{21189}$.		-	${ }_{92}$	${ }_{1520}$	${ }_{210}$
	(1.7)	(42.9)	(7.1)			(13.1)				(5.4)	(9.1)	(1.6)
ect.nornoc.	${ }_{\text {c }}^{1689}$		(1509	${ }^{1655}$	-	${ }^{23812}$			${ }^{1897}$	835	${ }^{1098}$	
		${ }^{(40.6)}$		${ }_{\substack{0.8) \\ 242 \\ \\ \hline}}$		${ }_{(14.0)}^{(265)}$	${ }_{\substack{10.2) \\ 367}}$		${ }^{(0.9)}$	${ }_{\text {c }}^{\text {(4. }} 81$	${ }_{\text {(5.4) }}^{\text {j2 }}$	${ }^{(2,8)}$
	(4.7)	(12.8)	(1.3)	${ }^{(1.3)}$			(1.9)	(0.6)	${ }^{0.37}$	(4.4)	(2.0)	(1.6)
	${ }_{\text {(5,5) }}^{1312}$	${ }_{(15.7)}{ }^{2 \times 7}$	(0.154,	(150)	:	(13817	300 (1.3)	(0.5)	-	(10.4)	(2.22)	(0.4) (0.4)
Fotal	${ }_{\substack{200989 \\(10.6)}}$		${ }_{\text {(89,0) }}^{\text {(89, }}$		${ }^{\text {(1.49) }}$				${ }_{\text {2 }}^{2285}$ (1.2)	${ }_{(3,4)}^{\text {(37.4) }}$	$\underset{\text { 189,29 }}{18}$	

Table (2). (Continuen)

Tatal eatch (X_{f}) obtained by f/v gazelie throwin the year 1978.

Sp.Mo. Moath	1	2	3	4	5	6	7	8	9	10	11	12
$\begin{aligned} & \text { tant } \\ & \text { Fet. } \end{aligned}$												
	1584	3797			-	2623	245	-	-	939	895	12
	(9.4)	(22.5)	(0.1)	(0.4)	-	(15.5)	(0.4)	-	-	(5.6)	(1.4)	(0.1)
Mar.	1487	1632	19	-	*	1232	92		45	343	479	-
	(22.3)	(24.4)	(0.3)	-	-	(18.5)	(1.4)	-	(0.7)	(5.1)	(7.2)	-
Apr.	4327	2196	-	410	596	8720	14	-	-	1272	656	
	(29.0)	(14.7)	-	(2.7)	(4.0)	(11.5)	(0.1)	-	-	(8.5)	$(4,4)$	-
my	3270	7434	722	198	607	1888	-	-	625	1126	3543	155
	(12.8)	(29.0)	(2.8)	(0.8)	(2.4)	(7.4)	-	-	(2.4)	(4.4)	(13.8)	(0.6)
ruen	1624	8793	458	103	280	1839	3	-	238	529	10645	-
	(5.8)	(31.2)	(1.6)	(0.4)	(1.0)	(5.8)	-	-	(0.8)	(1.9)	(37.9)	-
4.	1982	8741	387	167	200	2684	-	-	90	372	9055	-
	(7.2)	(31.7)	(1.4)	(0.6)	(0.7)	(9.7)	-	-	(0.3)	(1.3)	(12.9).	-
Auns.	1400	5454	587	120	814	1083	-	45	-	496	6065	-
	(8.1)	(30.1)	(3.2)	'9.7)	(4.5)	(6.0)	-	(0.2)	-	(2.7)	(30.5)	-
Sen.	2044	12044	120	58	636	2776	114	-	70	637	3776	-
	(5.6)	(39.1)	(0.4)	(0.3)	(2.1)	(9.0)	(0.4)	-	(0.2)	(2.1)	(12.2)	-
Det.	1912	30320	1592	74	1504	3238	-	-	80	1090	3734	-
	(3.7)	(58.7)	(3.8)	(3.1)	(2.9)	(6.3)	-	-	(0.2)	(2.1)	(7.2)	-
Wov.	874	7114	108	-	763	1884	-	-	-	1378	515	10
	(3.6)	(29.8)	(0.5)	-	(3.2)	(7.9)	-	-	-	(5.7)	(2.1)	-
One.	363	747	-	-	301	1047	-	-	20	635	307	-
	(4.2)	(8.4)	-	-	(3.5)	(12.0)	-	-	-	(7.3)	(3.6)	-
Total	1945	38297	4013	1233	5701	21814	466	45				177
	$(8-2)$	(34.9)	(1.6)	(0.6)	(2.3)	(8.6)	(0.2)	(0.02)	(0.5)	(3.5)	(15.6)	(0.7)

Tabie (3). (continued).

So.to. moner	13	14	15	16	17	18	19	20	21	22	${ }^{23}$	24	Total
Jen.													
Fob.	-	-	-	-	2055	4714	-	-	-	255	-	-	17006
mar.	-		-	-	(11.8)	(27.3)	-	-	-	(1.5)	-		
	-	104	-	-	(0.8)	(15.3)	-	-	-	(2.5)	-		658
Apr.	-	69	-	-	318	2963	-	-	189	249	-	-	14965
	-	(0.5)	-	-	(2.1)	(19.6)	-	-	(1.3)	(1.7)	-	-	
my	-	400	-		2633	2690	20			428			25817
	-	(1.9)	-	-	(10.3)	(9.7)	(0.1)	-	-	(1.7)		-	
2m.	-	545	28	-	2311	502	.	-	-	278	-	6	29154
	-	(1.9)	(0.1)	-	(8.2)	(1.8)	-	-	-	(1.0)	-	(0.5)	
jut.	-	624	- -	-	2007	885	-	-	-	292	-	${ }^{66}$	2562
	${ }^{-1}$	(2.3)	-	-	(7.3)	(3.2)	-	-	-	(1.1)	-	(0.2)	
nug.	36	382	-	32	1133	75	4	-	-	67		220	18132
	(0.2)	(2.1)	-	(0.5)	(6.2)	(0.4)	-	-	-	(0.4)	-	\bullet	
Sep.	13	75	64	-	4259	2806	10	-	-	184	-	421	30662
	(0.4)	(2.5)	(0.2)	-	(23.5)	(9.1)	-	-	-	(0.5)	-	(1.4)	
act.	104	1376	172	-	424	1088	-	-	-	168		976	51674
	(0.2)	(2.7)	(0.3)	-	(8.2)	(2.1)	-	-	-	(0.3)	\bullet	(1.9)	
nov.		186	2151	-	371	3787		-	${ }^{1428}$	28	131	-	2394
	(0.3)	(0.8)	(9.0)	-	(13.8)	(15.14)	(t.)	-	(6.0)	(0.1)	(1.1)	*	
ma.	-		1230	-	180	210	-	-	110		80	-	8692
	-	(0.8)	(14.1)	-	(18.3)	(25.3)	-	-	(0.8)	-	(0.7)	-	
Total	$\begin{array}{r} 9 \times 7 \\ (0.2) \end{array}$	$\begin{aligned} & 4598 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 3545 \\ & (1.5) \end{aligned}$	$\begin{array}{r} 82 \\ (0.1) \end{array}$	$\begin{aligned} & 23720 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 22509 \\ & (8.9) \end{aligned}$	$\begin{array}{r} 59 \\ (0.1) \end{array}$	-	$\begin{array}{r} 1725 \\ (0.7) \end{array}$	$\begin{array}{r} 2119 \\ (0.8) \end{array}$	$\begin{array}{r} 427 \\ (0.2) \end{array}$	$\begin{array}{r} 1879 \\ (0.7) \end{array}$	253507

Table (4)
seasonal catch and catch rate / hour of conmercial famllies obtained bu $\mathbf{1 / r}$ Gazelle. 1971.

Season Number of trips	Uninter12		Spring		Summer		Autuma	
Number of hours	324		420		336		624	
catch by	Total	Kg / h	Total	Kg/h	Total	Kg / h	Total	Kg / h
Sprranldae	8364	25.8	8159	19.5	839	2.5	3537	5.7
tethrinldae	8004	24.7	32096	76.4	12328	36.7	15291	24.5
stromattidae	392	1.1	4195	9.9	1778	5.3	1528	2.4
Lutjanifae	1216	3.8	2495	5.9	1227	3.7	1283	2.1
Carangldae	3108	9.6	1459	3.5	390	1.2	7533	12.1
Scombridae + Siganidae	260	0.8	1922	4.6	$3 / 4$	1.1	1201	1.9
Nemiptridae + Mullidae	2485	7.6	12987	30.9	3250	9.7	5116	8.2
Sphyrinidse	499	1.5	4337	10.3	1211	3.6	15147	24.3
Marketable rishes	7858	24.3	8311	19.9	3650	10.9	12409	19.9
Total	32166		76381		25097		63071	

Iable (6)
Sensonal catch and catch rate/bour of comercial fanililas obtalned by f/v gazelle during 197 A

Spason Number of trips	Winter 9		Spring 15 292		Suratiex 27 835		Autunm 26 Al_{3}	
Number of hours								
Catch by family	Total (Kg)	kg/h	Total (kg)	kg/h	Total (kg)	Kg / h	$\begin{aligned} & \text { Iotai } \\ & \text { (kg) } \end{aligned}$	kg/h
Serranidae	3071	13.3	9539	32.7	5486	6.6	$3: 49$	3.9
Lethrinidne	5429	16.9	18628	63.8	29239	35.0	30201	47.1
Stromat ldiae	39	0.2	1180	4.1	194	0.9	1725	2.2
lutjanidze	169	0.7	1883	6.5	2330	2.8	1834	2.3
Carangidae	6072	26.4	5952	20.4	3925	4.1	7071	8.7
Scombrldze * stgantiae	57	0.3	1018	3.5	160	0.2	110	0.1
Nomiptridae + Mullidae	2396	10.1	17810	81.1	20418	24.5	3659	9.1
Sphyrinidae	2052	8.9	5262	18.0	5581	6.7	9107	11.2
Harketable Iishes	4280	18.6	7428	25.4	9521	11.5	15450	19.1
Total	23565		68730		77554		84333	

Table ($\overline{\text { F }}$)
Total and catch rate/hour of conmerctal fishes through the years 1971 and 1978. (percentage between parantheses)

Catch/ramlly	1971		1978	
	total/kg	kg / h	total (kg.)	kg/h
Serranldae	20935	12.3	21245	9.8
(groopers	(10.7)		(8.4)	
Lethrinidae	67109	39.7	91497	24.2
(pigrace breams)	(31.5)		(36.0)	
Stromatidae	7893	4.6	3765	1.7
(ramirets)	(4.1)		(1.5)	
Lutjanidae	6221	3.7	6216	2.9
(snappers)	(3.2)		(2.1)	
Carangidae	12490	1.3	23020	10.6
(Jacks, trevallies, scads)	(6.4)		(9.1)	
Scombridae + Slganidae	3757	2.2	1345	0.6
(mackerels + rahbit fish)	(1.9)		(0.01)	
Memiptridae + Mullidae	23818	13.9	48313	22.3
(threadiln bream + goat rishes)	(12.1)		(19.0)	
Sphyrinidae	21194	12.4	22002	10.1
(barracude)	(10.8)		(8.7)	
Marketable rishes	$\begin{aligned} & 32288 \\ & (16.3) \end{aligned}$	18.9	$\begin{aligned} & 36719 \\ & (14.5) \end{aligned}$	17.0

From the observations recorded during the fishing trips, it was noteworthy that the commercially highly valued species of the family Serranidae were concentrated towards the southern coast of the Gulf, and near to the coast of U.A.E. From Fig. (2). square (1), this area has a rocky nature, beside many coral reef islands, followed by thick coral reefs till the southern shore of the Gulf. All these areas are known to be the natural habitat for the groupers. The f / v Gazelle frequently drags on and around the edges of these arens.

The Carangidae (scads, mackerels and trevallies) evedently form one of the highest percentages of the commercially valuable categories in the catch. 'The average catch/hour was 7.3 kg , increased to 10.6 kg in the two successive years. The catch of Caranx sp. increased during 1978 by more than 10 tons than during 1977. The knowledge of the nature of fish behaviour is one of the important factors influencing the size of the catch. It is known that jacks are strong swimmers, beside being midwater fishes. During hot season, the jacks dwell to the cool water layers, thus becoming available to the high opening of the trawl net. The long hot season which prevailed during 1978, plnyed an important role in increasing the carangids catch. They were concentrated in the squares designated by number 3, west to IIaloul ishand, and squares 4, south to llaloul Island. All the obtained yield was concentrated in the drags operated during midday. The trevally Caranx speciosus was collected just by hand net in the evening around the Gazelle
vessel. At the end of the day, the f/v Gazelle returned back to Haloul Island. The jacks trevally were jumping over the water surface, and became available to fishing in large amounts by the handnet. More than 80 kgs were collected within less than 3 hours.

The pigface bream belonging to family Lethrinidae, was more abundant in the catch than serranids. The average catch amounted to 39.7 kg . / hour through 1977 and $24.2 \mathrm{~kg} / \mathrm{h}$. during 1978. Their abundance covered all the squares shown in Fig.(2). Also, their size increased as the f/v Fazelle dragged towards the coral reef area and rocky bottom. The moderate sized fishes ($12-20 \mathrm{~cm}$.) were concentrated in the squares 2 and 3 , around and west to IIaloul Island, while the big sized fishes were mostly obtained from squares 1.

Stromatids showed a distinct decrease in the catch from 4.6 to $1.7 \mathrm{~kg} / \mathrm{h}$. The pomfrets are sensitive to any temperature change. The average catch rate of $4.6 \mathrm{~kg} / \mathrm{h}$ recorded in Table (4), was due to the long hot season prevailed in 1977, and forced these pelagic fishes to be demersal and available to the trawl net. The catch rate for family Stromatidae during spring and summer was 9.9 and $5.5 \mathrm{~kg} / \mathrm{h}$. , respectively. High temperature $\left(41.1^{\circ} \mathrm{C}\right)$ recorded in autum 1978 was also one of the main factors causing a relative increase in the trawl catch rate of such pelagic fishes to 2.2 kg / h. Pomfrets were mainly concentrated in squares 2 and 3 . Their catch increased as the temperature increased by daytime. Maximum yield was obtained in the midday drage.

The catch of family Lutjanidae was nearly the same in the successive two years, but the increase in the total yield of 1978 affected the average catch rate/hour. The snappers follow the groupers in their abundance in the catch. Both species increase in size as the $1 / v$ Cazelle dragged towrds the southern coast of the gulf. Also, some dr ${ }^{4} \mathrm{~s}$ s have more than 50% of its commercial catch made up of groupers and snapbers onlv.

Scombridae and Siganidae are fast swimmers, beside beirg pelagic fishes. Their presence in the catch is greally affected by the temperature variations, the difference in gear effeciency at the area trawlled in relation to current, and the fish behaviour itself. This was clearly observed in the difference in their catch rate / hour in both the two successive years, as shown in Table (4). Mackerels and rabbit fishes were concentrated in squares 2 and 3 only, west to Haloul Island. They were seldom caught from squares 1 and 4. Scombrids and siganids are commercially valuable fishes in the Gulf area.

The catch rate of threadfin breams Nemiptridae and red mullets Mullidae increased from $13.9 \mathrm{~kg} / \mathrm{h}$ during 1977 to $22.3 \mathrm{~kg} / \mathrm{h}$ in 1978. This Increase comprised both the catch rate and the total yield. This is due to the fact that f / v Gazelle concentrated its dragging in the squares 2 and 3 in short trips near to the eastern coast of Qatar Peninsula. For this reason, the
number of trips increased from 56 trips during 1977 to 74 trips during 1978, beside the smooth bottom, which is suitable for trawling, and in the same time favourable for these bottom feeder species of the threadfin breams and the goat fishes. The big catch of such demersal fishes during 1978 which was as nearly twice as the catch of 1977 , may compensate the low catch of both scombrids and siganids.

referencrs

Al-Daham N.K., 1977. Fishes of Iraq and the Arabian Gulf. Vol. 1, Centre four Arab Gulf Studies Publications, Basra Univ.
Al-Kholy, A.A., 1965. Flshes of Red Sea. Acad. Sci. Res. \& Tec., Calro, Egypt.
Al-Kholy, A.A., 1973. Report on the fisheries of Qatar. Min. Agr. Ind., Doha Qatar.
A1-Kholy, A.A., 1975. Fisheries of Kwait. Dep. Agr. Fish. Sec. Kwalt.
Bjarnason, B.A., 1979. Final report on large and small fishing vessels and methods. Rej. Fish. Sur. 8 Dev. Prj. Rab., 71-278.
E1-Sedfy, H.M., A. Imam and N. Al-Baker, 1982. Fishes of patar. Dep. Fish., Doha, qatar.
Fouad, E.F., 1980. Report on the marine section of Q.M.M. Doha Qatar.
Hartsanjker L., 1979. An outline of the exploitation of fish stocks in the northwest part of the Gulf. ReJ. Fish. Sur. and Der. PrJ. Rab., 71-278.
Sivasuberaminfam, K., 1978. Report on the demersal fish. Rej. Fish. Sur. Dev. Prj. RAB.: 71-278.
Sivasuberaminiam, K., and M.A. Ibrahim, 1982. Common fishes of Gatar. Sclentific Atlas of Qatar.
Yasaki. M., 1978. Review of expioratory trawling investigations and commercial fishing ventures. Rej. Fish. Sur. Dev. Prj. RAB: 71-278.

